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INTERNALITY IN FAMILIES

Abstract

by

Léo Jimenez

In geometric stability theory, internality plays a central role, as a tool to explore

the fine structure of definable sets. Studying internal types, one often encounters

uniformly defined families of internal types. This thesis is mainly concerned with

the study of such families, both from an abstract model-theoretic perspective and in

concrete examples.

In the first part, we generalize one of the fundamental tools of geometric stability

theory, type-definable binding groups, to certain families of internal types, which we

call relatively internal. We obtain, instead of a group, a type-definable groupoid, as

well as simplicial data, encoding structural properties of the family.

In the second part, we introduce a new strengthening of internality, called uniform

internality. We expose its connection with the previously constructed groupoids, and

prove it is a strengthening of preserving internality, a notion previously introduced by

Moosa. We then explore examples in differentially closed fields and compact complex

manifolds.

In the last part, we study a structural feature of stable theories, called the canon-

ical base property. We prove that Hrushovski, Palaćın and Pillay’s counterexample

does not transfer to positive characteristic. Elaborating on the counterexample, we

also provide an abstract configuration violating the canonical base property.



You have to dig it to dig it, you dig?

Thelonious Monk
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CHAPTER 1

INTRODUCTION

1.1 Background

One of the foundational themes of modern model theory is to study complete first-

order theories via the fine structure of their definable sets. This approach started in

the sixties with Morley’s work [26], where he proves that a complete countable theory

categorical in one uncountable cardinal is categorical in all uncountable cardinal. To

do so, he introduces what will become known as Morley rank, a notion of dimension

for definable sets.

In the same vein, Zilber proved in 1980 ([41]) that totally categorical theories are

not finitely axiomatizable. To do so, he introduced internal definable sets. Given two

definable sets X and Y , the set X is internal to Y if (roughly) there is a definable

bijection between X and a definable subset of Y eq. Of crucial importance is the

possibility of needing new parameters to define this bijection.

In this same paper, Zilber gave the first construction of a binding group. If X is

internal to Y , the binding group is a definable group acting on X, which is isomorphic,

as a group action, to the group of automorphisms of X fixing Y pointwise. These can

be seen as generalizing Galois groups for field extensions. Supporting this analogy

is Poizat’s observation that Kolchin’s differential Galois groups are an incarnation of

binding groups [33].

Internal sets and their binding groups proved to be extremely powerful tools in

the understanding of stable theories of finite Morley rank. The working philosophy
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is that models can in some sense be recovered from their strongly minimal sets, using

internal sets. More precisely, Zilber’s Ladder Theorem [42] states that any definable

set is obtained as an iterated fibration, where each of the fiber is internal to a strongly

minimal set.

A few years later, internal types make their first appearance. They are used by

Hrushovski in [10] to prove that unidimensional theories are superstable. Crucial to

this proof is the construction of the binding group of a type, which is type-definable.

Moreover, in Hrushovski’s thesis [9], Zilber’s Ladder Theorem is transfered to types,

in what is known as the analysis of a type: if a |= p and P is a fixed family of partial

types, then a P-analysis of p is a sequence a = an, · · · , a0 such that tp(ai+1/ai) is

internal to P for all i. In the spirit of the Ladder Theorem, one can prove that in

a superstable theory of finite U -rank, any type is analysable in the family of U -rank

one types. Let us also mention Buechler’s notion of levels, introduced in [1]. It is

very closely related to analysability, and used, in the same paper, to prove Vaught’s

conjecture for superstable theories of finite rank.

Hence, analysability is an omnipresent phenomenon in superstable theories, but

it is still poorly understood. In analogy with internal types and binding groups, it

is natural to ask what is the definable algebraic structure, if any, arising from an

analysable type. This question was asked, and partially answered, for analysable

covers in Hrushovski’s [13] and Haykazyan and Moosa’s [8]. The heart of this disser-

tation is the construction of various type-definable groupoids arising from analysable

types.

In the late 2000’s, Moosa and Pillay [25], motivated by complex analytic geome-

try, introduced a strong structural feature of superstable theories of finite rank: the

canonical base property. It has a number of attractive consequences, such as a sim-

pler proof of Zilber’s trichotomy for differentially closed fields of characteristic zero

given by Pillay and Ziegler in [32]. For a few years, it was conjectured that all super-
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stable theories of finite rank had the canonical base property, until a counterexample

was constructed by Hrushovski, Palaćın and Pillay in [16]. The last chapter of this

dissertation will be concerned with elaborating on their construction.

Roughly speaking, the canonical base property states that if b is the canonical

base of tp(a/b), then tp(b/a) is internal to the family of non-locally modular types

of U -rank one. By the work of Chatzidakis [2], this type is always analysable in

the family of non-locally modular rank one types. Thus, uncovering criteria for an

analysable types to be internal is a very natural approach to studying the canonical

base property.

This motivates Moosa’s introduction [24] of preservation of internality, a property

of an internal type that, in particular, forces certain analysable types to be internal.

Our work on groupoids will lead us to introduce a stronger property, which we call

uniform relative internality, that exactly captures how analysable types can be forced

to be internal.

1.2 Summary of Results

In Chapter 3, we set up the main theme of this dissertation: relatively internal

types. These are, grosso modo, types equipped with a definable map, such that all

fibers are internal. More precisely, let us fix a family of partial types P , all over ∅,

we define:

Definition. Let q be a complete type over A, and π an A-definable partial map,

defined on any realization of q. The pair (q, π) is said to be relatively P-internal if

for any (some) a |= q, the type tp(a/π(a)A) is stationary and P-internal.

The main structural result of Chapter 3 is the generalization to relatively internal

types of the binding group construction:

Theorem 3.1.3. Let (q, π) be a relatively internal pair. There is an A-type definable
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groupoid G, acting A-definably on q(M) as partial elementary maps between fibers

of π restricted to q(M), fixing P(M) ∪ A, where P(M) is the set of realizations of P

in the monster model.

We refer the reader to Chapter 3 for more details on this groupoid. The rest of the

Chapter is dedicated to connecting properties of (q, π) to properties of the groupoid.

The first groupoid property studied is retractability, which was introduced in [7]. It

states that there is an A-definable full and faithful functor from G to an A-definable

group. This is very strong, and as such implies a strong restriction on q: it has to

be the product of two types, one of which is P-internal and π is a projection from q

onto the other. An application to pullbacks in differential fields of characteristic zero

is discussed.

We then move to a more complex object, encoding how fibers interact with each

other: a Delta groupoid (see Definition 3.3.15 and the following proposition). Us-

ing Delta groupoids, we state an equivalence between internality of q and a certain

projective limit of type-definable groups being itself type-definable. Roughly speak-

ing, we can construct a projective system of type-definable groups by considering the

binding groups of the relatively P-internal pairs (q⊗n, π), i.e. the binding groups of n

independent fibers, for all n ∈ N. If π(q) is P-internal, then the type q is P-internal

if and only if the restrition maps between these groups become injective if n is large

enough (implying type-definablity of the projective limit).

Moving to Chapter 4, we stop working with groupoids and instead give a condition

equivalent to the internality criteria of Chapter 3, namely:

Definition. Let (q, π) be a relatively P-internal pair, with q ∈ S(∅). Then (q, π) is

said to be uniformly relatively P-internal (resp. almost P-internal) if there is a tuple

e such that for any a |= q, we have a ∈ dcl(π(a), e,P) (resp. a ∈ acl(π(a), e,P)).

We start by giving various equivalent characterization of this property, inspired

by similar statements for internal types. We also give an interesting structural result:
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Theorem 4.1.9. Suppose (q, π) is uniformly relatively almost internal. Then there

is a tuple of parameters t such that:

1. for any a |= q independent from t over ∅, we have a ∈ acl(t, π(a),P)

2. tp(t/∅) is P-internal

We then prove that uniform internality implies preservation of internality:

Definition. The stationary type tp(a/b) is said to preserve P-internality if for any

c such that tp(b/c) is internal, the type tp(a/c) is internal.

We then set out to determine if and when this implication is strict. To start

with, we exhibit examples of types preserving internality to the constants but not

uniformly internal to them, in differentially closed fields of characteristic zero. We

then consider two examples of preservation of internality from the literature:

• Differential tangent bundles in DCF0

• Moishezon morphisms in compact complex manifolds

In the case of compact complex manifolds, we show that uniform internality is

much stronger than preserving internality, as it implies algebraicity over the projective

line. In the case of differential tangent bundles, we only present a few uniformly

internal examples. In a forthcoming paper, joint with Rémi Jaoui and Anand Pillay,

a non-uniformly internal example is constructed.

Finally, Chapter 5 is dedicated to the canonical base property (CBP):

Definition. Let T be a superstable theory and M |= T a monster model. The theory

T is said to have the canonical base property if (possibly working over some param-

eters) for any tuples a, b ∈M, if stp(a) has finite Lascar rank and b = Cb(stp(a/b)),

then tp(b/a) is almost P-internal, where P is the family of non-locally modular rank

one types.
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We prove that Hrushovski, Palaćın and Pillay’s counterexample [16] does not

go through in positive characteristic, answering a question of these same authors.

Abstracting their counterexample, we provided an axiomatic framework forcing a

theory to not have the canonical base property, with the hope that it could be used

to construct new counterexamples.
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CHAPTER 2

PRELIMINARIES

2.1 Stability Theory

Throughout this dissertation, we will assume familiarity with standard model the-

oretic notions such as definable sets, types, automorphisms, algebraic and definable

closures... A reference for these is [38]. Our notation will be standard. We will use

this preliminary section to discuss more specific stability machinery that we will use

regularly. All results and definitions from this section are taken from [38] and [29].

But first, let us introduce a convenient set up: the monster model. In their daily

life, the working model-theorist quickly realize how frequently they have to choose

a model, which has to be saturated enough, homogeneous enough, and contain all

parameters in use. This sort of argument tends to become tedious, and one truly

wishes to fix such a model once and for all. Doing so requires, in general, to assume

more than just the standard ZFC axioms, and said model would have to be class-size.

Let us be more concrete: let T be any complete first order theory with infinite

models. Following [38], Chapter 6, Section 1, we will work in the extension BCG

(Bernays-Gödel+Global Choice) of ZFC, which adds classes to ZFC (we refer to

[38], Appendix A for more precision). Under this set up, there is a unique (up to

isomorphism) class size model M |= T such that:

• any type over any subset of M is realized in M

• M is κ-saturated for any cardinal κ

• any model of T elementary embeds in M
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• any elementary bijection between two subsets of M can be extended to an
automorphism of M

We call M the monster model of T . In this dissertation, we will usually work in the

monster model of a stable theory. In particular, all sets of parameters, realizations of

tuples... will be taken in M, and all models will be elementary substructures of M.

Moreover, all (type-)definable sets will be seen as contained in M. Note that if

infinite, then they actually are class-sized. In this dissertation, we will call any set-

sized set small (the usual tools of model theory can be used freely over that set), and

a class-size set big (more care will have to be taken). The need to work over big sets

will arise frequently. We will discuss how to do so rigorously in the next section.

Finally, let us recall that the use of monster models, although extremely conve-

nient, is optional, and that all our proofs would go through by choosing appropriately

large models. We refer to [38] for details on how to avoid them.

From now on, when fixing a theory T , we will also always, in the background, fix

a monster model M, where all tuples, parameters,... will live.

Let us now start on stability theory. Fix some complete theory T in a language

L. An L formula is said to be stable if there is an infinite cardinal λ such that

|Sφ(A)| ≤ λ whenever |A| ≤ λ. Here, the set Sφ(A) is the space of φ-types over

A, i.e. maximal consistent sets of formulas of the form φ(x, a) or ¬φ(x, a), for some

a ∈ A. The theory T is said to be stable if all its formulas are.

Stability was introduced by Shelah [36], with the goal studying the number of

non-isomorphic models of a theory T . Many more combinatorial and/or geometric

characterizations have been found since. We will only cite the ones that will be useful

to us. First, there is definability of types:

Definition 2.1.1. A type p(x) ∈ S(A) is said to be definable over B ⊂ A if for any

L-formula φ(x, y) there is an L(B) formula ψ(y) such that for any a ∈ A, we have:

φ(x, a) ∈ p if an only if |= ψ(a)
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It is said to be definable if it is definable over A.

The formula ψ(y) is called a defining scheme for φ(x, y). A common use of

definable types is to identify some set with the defining scheme of a definable type,

in order to prove that said set is definable. We will use that strategy in the proof of

Theorem 3.1.3.

We have the following characterization of stability:

Theorem 2.1.2. The theory T is stable if and only if all types are definable.

For the reminder of this section (and dissertation), we will always restrict ourselves

to stable theories. Thus from now on, we work in the monster model M of a stable

theory T .

A key feature of stable theories is the existence of a well-behaved notion of inde-

pendence, called non-forking:

Definition 2.1.3. A family of formulas (ψi(x))i∈I is k-inconsistent, for k ∈ N, if for

any k-element subset K of I, the set {ψi(x), i ∈ K} is inconsistent.

A formula φ(x, a) divides over A if there is a sequence of realizations (ai)i<ω of

tp(a/A) and k ∈ N such that {φ(x, ai), i < ω} is k-inconsistent. A partial type Φ(x)

divides over A if it contains a formula that does.

Definition 2.1.4. A partial type Φ(x) forks over A if there are some formulas

φ0(x), · · · , φn(x) such that Φ(x) implies
n∨
i=1

φn(x) and each φi divides over A.

If A ⊂ B, and we have p ∈ S(A) and q ∈ S(B) extending q, we say that q is a

non-forking extension of p if q does not fork over A. Such an extension always exists,

for any B ⊃ A.

The reader worried about the extra complexity introduced by forking will be

delighted to learn:

Fact 2.1.5. In stable theories, forking and dividing coincide.
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We are often interested in elements of M being independent from each other.

Non-forking provides us with such a notion:

Definition 2.1.6. Let A be a set of parameters, and b, c ∈ M. We say that b is

independent from c over A if tp(b/Ac) does not fork over A. This is commonly

written as b |̂
A
c.

If C is a set of parameters, we similarly write b |̂
A
C if tp(b/AC) does not fork

over A.

Central tools for the study of stable theories are indiscernible sequences and Mor-

ley sequences:

Definition 2.1.7. Let A be a set of parameters. A sequence (ai)i<ω of tuples is

said to be A-indiscernible if for all i1 < · · · < in and j1 < · · · < jn, we have

tp(ai1 , · · · ain/A) = tp(aj1 , · · · , ajn/A).

A sequence (ai)i<ω of tuples is said to be A-independent if ai |̂ A{aj, j < i} for

all i < ω.

Finally, a sequence (ai)i<ω is said to be a Morley sequence over A if it is both

A-indiscernible and A-independent.

Fixing a type p ∈ S(A), a Morley sequence in p is a Morley sequence (ai)i<ω over

A such that ai |= p for all i.

An extremely useful concept for the study of stable theories is stationarity:

Definition 2.1.8. A type p ∈ S(A) is said to be stationary if for any B ⊃ A, there

is a unique non-forking extension of p to B. We denote this extension p|B.

This can be thought of as p having a unique canonical extension to any set of

parameters. In particular, it is common to consider the global non-forking extension

p of a stationary type p, which is defined as its unique extension to a type over M.

This has the useful consequence of yielding a product operation between station-

ary types:
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Definition 2.1.9. Let p, q ∈ S(A) be two stationary types. The type of (a, b), where

a |= p, b |= q and a |̂
A
b is unique, and denoted p⊗ q.

In particular, for any stationary type p, we can form the iterated product of p

with itself, it is denoted p⊗ · · · ⊗ p︸ ︷︷ ︸
n times

= p⊗n

Stationarity is not an automatic property: in algebraically closed fields, for ex-

ample, it is connected with issues of absolute irreducibility.

Stationary types are part of the foundation of many stability theory techniques,

as we will see in this section, and will be used frequently in this dissertation.

Given this, it would be desirable to identify and produce stationary types. For-

tunately, this is possible in any stable theory, if one accepts to work in an harmless

extension. Namely, we need to work with imaginaries.

As this has been exposed in many places, our discussion of imaginaries will be

brief. We refer the reader to [38], Section 8.3 for more details. For this section, we

will always consider a complete first order theory T .

Imaginaries were introduced by Shelah in [37], with the goal of producing canon-

ical parameters for definable sets.

Definition 2.1.10. A tuple d ∈M is said to be a canonical parameter for a definable

set X if σ(X) = X if and only if σ(b) = b, for any σ automorphism of M.

The existence of canonical parameters is not guaranteed. For example, in an

infinite model T of the theory of equality, the set {a, b}, for a 6= b, has no canonical

parameter.

We invite the reader to contrast this with the situation in an algebraically closed

field: if a 6= b, then an automorphism fixes {a, b} if and only if it fixes the polynomial

(x−a)(x−b) if and only if it fixes {ab, a+b} pointwise. In fact, symmetric polynomials

can be used to show that ACF eliminates imaginaries :
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Definition 2.1.11. The theory T eliminates imaginaries if any class e/E of an ∅-

definable equivalence relation E has a canonical parameter.

In a theory eliminating imaginaries, every definable set has a canonical parameter,

hence the usefulness of this property. But how can we make sure that a given theory

eliminates imaginaries? From the previous definition, we see that we need only add

canonical parameters for ∅-definable equivalence relations.

This is done as follows: fix a model M |= T . For each ∅-definable equivalence

relation E, add a quotient sort M/E and a quotient map πE : M →M/E. The theory

of this (multi-sorted) structure is denoted T eq, and this model is denoted M eq. The

original model M is called the home sort, and other sorts are called imaginary sorts.

We again refer the reader to [38], Section 8.3 for more details on the construction.

The main properties of this theory are:

Fact 2.1.12. Let M be the monster model of T .

1. The ∅-definable sets of the home sort in Meq are the same as the ones of M

2. The theory T eq eliminates imaginaries

3. T is stable if and only if T eq is stable.

4. The same goes for λ-categoricity.

Some important examples of theories eliminating imaginaries are algebraically

closed fields, differentially closed fields of characteristic zero and compact complex

varieties.

If one is only interested in model-theoretic properties of a theory, there is often

no harm in working in T eq, and we will do so in this dissertation. However, bear in

mind that for theories that do not have elimination of imaginaries, finding a small, or

canonical, family of imaginaries sufficient to eliminate them all can be a non-trivial

issue.
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Let us now go back to stability, and consider a stable theory T , and its monster

model M. We now also have constructed the model Meq |= T eq. We will denote

acleq(A) the algebraic closure of A in Meq. The key property of the imaginary alge-

braic closure is the following:

Lemma 2.1.13. Let A be any set of parameters. Any type p ∈ S(acleq(A)) over

acleq(A) is stationary.

If A is a set of parameters, and a is some tuple, then we call the strong type of a

over A, and denote stp(a/A), the type tp(a/ acleq(A)) (which is thus stationary).

It is common, when studying stable theories, to assume elimination of imaginar-

ies. As we have seen, this is mostly harmless if not working with a specific theory. For

the remainder of this section, we will assume that T eliminates imaginaries, an as-

sumption often denoted as T = T eq in the literature. In particular, algebraic closure

is always assumed to be the imaginary algebraic closure, so types over algebraically

closed sets are always stationary.

One of the defining features of stationary types (assuming elimination of imagi-

naries) is:

Theorem 2.1.14. Let p ∈ S(A) be stationary. Then there is a unique definably

closed set Cb(p), the canonical base of p, satisfying the following:

1. Cb(p) ⊂ dcl(A)

2. For any B ⊂ A, p does not fork over B if and only if Cb(p) ⊂ acl(B)

3. Consider the global extension p of p. If σ ∈ Aut(M), then σ fixes the type p if
and only if it fixes Cb(p) pointwise.

Note that as a consequence of 2., if C ⊃ A, then Cb(p|C) = Cb(p): the canonical

base is invariant under taking a non-forking extension. Moreover, the following very

useful lemma tells us where to look for this canonical base:
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Lemma 2.1.15. Let p ∈ S(A) be stationary, and (ai)i<ω be a Morley sequence in p.

Then Cb(p) ⊂ dcl(ai, i < ω).

Thus, the data needed to define any stationary type is contained in the definable

closure of a sequence of its realizations. This is an extremely strong property.

The following theorem summarizes properties of non-forking in stable theories:

Theorem 2.1.16. Denote A,B,C, · · · sets of parameters, and a, b, · · · tuples. If T

is stable, non-forking has the following properties:

• (Monotonicity and Transitivity) a |̂
A
CB if an only if a |̂

A
B and a |̂

AB
C.

• (Symmetry) a |̂
A
b if and only if b |̂

A
a.

• (Finite Character) If p ∈ S(B) forks over A, then there is a finite B0 ⊂ B such
that p|AB0 forks over A.

• (Local Character) For any a,A, there is A0 ⊂ A of cardinality at most |T | such
that a |̂

A0
A.

• (Existence) Any type p ∈ S(A) has a non-forking extension to any set contain-
ing A.

• (Algebraic Closure):

1. If p = tp(b/A), where b ∈ acl(A), then p does not fork over A.

2. If a |̂
A
a, then a ∈ acl(A).

• (Stationarity) If p ∈ S(A), with A algebraically closed, and a, b |= p with
a |̂

A
B and b |̂

A
B, then tp(a/AB) = tp(b/AB).

This theorem allows for algebraic manipulation of the independence symbol, often

called ”forking calculus”. It is a very powerful tool for the study of stable theories,

and in concrete examples, non-forking often corresponds to meaningful phenomena

(such as transcendence in algebraically closed fields).

Non-forking sometimes comes attached to a notion of dimension, or rank. Two

ranks will be of particular interest to us in this dissertation: Morley rank and Lascar

rank.
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Observe that forking defines a partial ordering on types by q < p if and only if q

is a forking extension of p. We can then define the ordinal-valued foundation rank of

a type inductively:

• For a successor ordinal α, define rank(p) ≥ α + 1 if there is q < p such that
rank(q) ≥ α

• For limit β, set that rank(p) ≥ β if rank(p) ≥ α for all α < β

We can then define rank(p) = α if rank(p) ≥ α and not rank(p) ≥ α + 1. We set

rank(p) =∞ if rank(p) ≥ α for all ordinal α.

So by algebraicity, the rank of any algebraic type is set to zero. If the only

forking extension of a type is algebraic, it is assigned rank one, and we can proceed

inductively from there.

This rank is called the Lascar rank, or U -rank, and is denoted rank(p) = U(p),

for a type p.

Definition 2.1.17. Let T be a stable theory. If every type has ordinal-valued Lascar

rank, T is said to be superstable.

This is the only definition of superstability we will use, but there are many others,

and we invite the reader to consult [29] for more information.

We can also, given a tuple a and a set of parameters C, define U(a/A) =

U(tp(a/A)). In a superstable theory, the Lascar rank completely captures non-

forking:

Proposition 2.1.18. Assume T superstable. Let a be a tuple, and B,C parameters.

Then a |̂
B
C is and only if U(a/B) = U(a/BC).

Finally, a very useful fact is additivity of Lascar rank for finite rank types:

Lemma 2.1.19. Assume that U(a, b/A) < ω. Then U(a, b/A) = U(a/A) +U(b/aA).
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This is no longer valid if the rank is greater than ω, but some weaker formula,

involving Cantor normal sum of ordinals, still holds. See [29], Chapter 1, Lemma

3.26, for more details.

The other notion of rank that will come in handy is Morley rank. It is more

conveniently defined for formulas first, and then for types.

Let φ(x) be a formula with parameters in the monster model M, we can define

its Morley rank inductively by:

• RM(φ ≥ 0) if φ is consistent.

• RM(φ) ≥ α+1 if there is an infinite family {ψi(x), i < ω} which all imply φ(x),
are pairwise inconsistent, and with RM(ψi) ≥ α for all i.

• If β is a limit ordinal, set RM(φ) ≥ β if RM(φ) ≥ α for all α < β.

We can then define Morley rank of a formula as follows:

• RM(φ) = −∞ if φ is inconsistent.

• RM(φ) =∞ if RM(φ) ≥ α for all ordinal α.

• If there is α such that RM(φ) ≥ α but not RM(α) ≥ α + 1, set RM(φ) = α.

The Morley rank of a type is then defined as RM(p) = min{RM(φ), φ ∈ p}, and

if a is a tuple and C a set of parameters, we define RM(a/C) = RM(tp(a/C)).

Definition 2.1.20. A theory T is said to be totally transcendental if every formula

has ordinal-valued Morley rank.

In totally transcendental theories, forking is entirely controlled by Morley rank:

Proposition 2.1.21. Assume T is totally transcendental. Let a be a tuple, and B,C

be sets of parameters. Then a |̂
B
C if and only if RM(a/B) = RM(a/BC).

Unlike Lascar rank, Morley rank is not additive in general. However, it is for one

very important class of formulas:
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Definition 2.1.22. A formula φ(x) is said to be strongly minimal if for any formula

ψ(x), either φ(M) ∩ ψ(M) or φ(M) ∩ ¬ψ(M) is finite.

A theory T is said to be strongly minimal if x = x is a strongly minimal formula.

Note that it is important to be working in the monster model, as the theory

Th(N, <) is not strongly minimal, but in the model (N, <), the formula x = x does

satisfy the assumptions of the previous definition.

Lemma 2.1.23. In a strongly minimal theory, Morley rank is additive, i.e. for all

tuples a, b and set of parameters C, we have RM(a, b/C) = RM(a/C) + RM(b/aC).

One might wonder how these two ranks are related. All that holds in general is:

Fact 2.1.24. For any tuple a and set of parameters A, we have U(a/A) ≤ RM(a/A).

Equality may not hold. For example, in the theory Th(Z,+), there are types

with undefined Morley rank but finite Lascar rank. Even in totally transcendental

theories, the two ranks might differ, as in differentially closed fields of characteristic

zero (although it is non-trivial to prove, see [15]).

Lastly, let us mention a key relationship between two types: orthogonality.

Definition 2.1.25. If p, q ∈ S(A) are two types, we say that p and q are weakly

orthogonal if whenever a |= p and b |= q, we have a |̂
A
b.

If p ∈ S(A) and q ∈ S(B) are stationary types, we say that p and q are orthogonal

if whenever C ⊃ A ∪B, a |= p|C and b |= q|C , we have a |̂
C
b.

Intuitively, two types are non-orthogonal if (possibly after taking their non-forking

extension), there is a non-trivial relationship between their realizations. In that light,

the following lemma is structurally strong:

Lemma 2.1.26. Let p ∈ S(A) be a stationary non algebraic type of finite Lascar

rank. There is some stationary type q such that U(q) = 1 and p is not orthogonal to

q.
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Repeated applications of this lemma will yield much more, as we will see in the

next section.

One could wonder, since in a finite Lascar rank theory, any type is non-orthogonal

to a rank one type, how many rank one types there are in a given theory. In fact,

it is correct to consider the number of rank one types up to non-orthogonality. Of

particular interest is:

Definition 2.1.27. The theory T is said to be unidimensional if any two non alge-

braic stationary types p and q are non-orthogonal.

In that case, there is at most one Lascar rank one type up to non-orthogonality,

hence the name unidimensional. In fact, such a rank one type has to exist, because

of the following theorem:

Theorem 2.1.28. Unidimensional theories are superstable.

A convenient consequence of unidimensionality, that we will use in Chapter 5, is:

Lemma 2.1.29. If T is unidimensional and totally transcendental, then Morley rank

equals Lascar rank. In particular, Morley rank is additive on finite rank tuples.

We refer to [29], Chapter 1, Section 5, for more details on unidimensional theories.

When a theory fails to be unidimensional, it is desirable to understand and classify

its rank one types. An important tool is the combinatorial geometry associated to

any rank one type:

Definition 2.1.30. A (combinatorial) pregeometry is a set S equipped with a closure

operation cl : P(S)→ P(S), such that for all X, Y ⊂ S and a, b ∈ S:

• (Idempotence) cl(cl(X)) = cl(X)

• (Monote Increasing) X ⊂ cl(X)

• (Exchange) If a ∈ cl(X ∪ {b}) \ cl(X), then b ∈ cl(X ∪ {a})
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• (Finite Character) If a ∈ cl(X), then a ∈ cl(Y ) for some finite Y ⊂ X

A pregeometry (S, cl) is said to be a geometry if cl(∅) = ∅ and cl({a}) = {a} for

all a ∈ S.

A set X is said to be closed if X = cl(X).

To any pregeometry (S, cl) we can associate a canonical geometry (S ′, cl′) by

letting S ′ = {cl({a}), a ∈ S \ cl(∅)} and for any X ⊂ S, defining cl′({cl({a}), a ∈

X}) = {cl({b}), b ∈ cl(X)}.

Another way to construct pregeometries is to localize: if (S, cl) is a pregeometry

and A ⊂ S, we can define (S, clA) as the pregeometry on S given by clA(X) =

cl(A ∪X) for all X ⊂ S.

The exchange property yields the existence of well-behaved notion of dimension

and independence. More precisely, if A,B ⊂ S, we say that A is independent over B

if for any a ∈ A, we have a /∈ cl((A \ {a})∪B). We say that A0 is a basis for A over

B if A ⊂ cl(A0 ∪ B) and A0 is independent over B. By exchange, all bases have the

same cardinality, which we call the dimension of A over B, and denote dim(A/B).

Geometries and pregeometries arise frequently in model theory, a classical example

being:

Proposition 2.1.31. Let p ∈ S(A) be a stationary type of Lascar rank one in some

stable theory T . Consider the set S = p(M) of realizations of p in a monster model

M |= T . If we let clS(X) = acl(X ∪ A) ∩ S, for any X ⊂ S, then (S, clS) form a

pregeometry.

Note that the same can be done replacing S by the set of realizations, in M, of

some strongly minimal formula.

Thus, tools from the theory of pregeometries can be used to classify stationary

Lascar rank one types. Among the main dividing lines are:

Definition 2.1.32. A pregeometry (S, cl) is said to be:
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• Trivial (or disintegrated) if for every X ⊂ S, we have cl(X) =
⋃
a∈X cl({a})

• Modular if for any closed sets X, Y ⊂ S, we have that X is independent from Y
over X ∩ Y . Equivalently, that dim(X) + dim(Y )− dim(X ∩ Y ) = dim(X ∪ Y )
for any finite dimensional closed sets X and Y .

• Locally modular if its localization to some a ∈ S is modular.

A stationary Lascar rank one type p is said to have one of these properties if its

associated pregeometry does.

Of course, any such type p is either trivial, locally modular and not trivial, or non-

locally modular. This is a very important trichotomy in model theory. Intuitively,

trivial types should be ”set-like” and not be amenable to geometric tools. Locally

modular non-trivial types are expected to be ”vector space-like”. In fact, from any

such type, one can construct a type-definable group (see [29], Chapter 5, Section 1

for more details).

It was long expected that non-locally modular types would be ”field-like”, and in

particular that one should be able to interpret a type definable algebraically closed

field in such a type. This was known as Zilber’s Trichotomy. It was proven to be

false by Hrushovski in [12], where a counterexample was constructed.

However, this trichotomy is still a strong guiding line in model theory, and some

important theories do satisfy it, meaning the types in said theory satisfy the tri-

chotomy. Examples include differentially closed fields of characteristic zero, a theory

that will be central in this dissertation.

2.2 Internality

The central thread of this dissertation is internality of types, by themselves or in

families. In this expository section, we will collect definitions and results that will

prove useful to us. Most of this material is covered in chapter 7, section 4 of [29].

We fix the convention, which will be standard for this dissertation, of working in
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a monster model M of a stable theory T . We moreover assume that T eliminates

imaginaries.

Historically, internality was first considered for definable sets, not for types. Let

us recall here what we mean by internal definable sets:

Definition 2.2.1 (for any theory T ). Let φ(M) and ψ(M) be definable sets. The

set φ(M) is said to be ψ(M)-internal if for some small set B, we have φ(M) ⊂

dcl(ψ(M), B).

In this dissertation, we will mostly work with types. We fix a family P of partial

types, over small subsets of the monster model. We let P(M) be all the tuples in

M realizing some type in P . We will usually make the small abuse of notation of

denoting this by P . No confusion should arise from this, as the context will always

make clear if we are referring to tuples or types.

When considering families of partial types over varying subsets of parameters

(such as, for example, the family of all Lascar rank one types), we will often need to

restrict to those over a fixed set of parameters. Given such a family P , and some set

of parameters B, we call a tuple a a realization of P over B if tp(a/B) is an extension

of some Φ ∈ P which is over B (i.e. has its parameters contained in B). The set of

all realizations of P over B is denoted P|B.

Let us now begin with the basic definition:

Definition 2.2.2. Let q ∈ S(A) be a stationary complete type. We say that q is

P-internal (resp. almost P-internal), or internal to P , if there are B ⊇ A, a tuple a

realizing q|B, and c1, · · · , cn realizations of P|B such that a ∈ dcl(B, c1, · · · , cn) (resp.

acl).

Notice once again the crucial feature of internality: we introduced the extra pa-

rameters B.
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An essential property of the family P , which is needed for any of the relevant

theorems to hold, is that of invariance.

Definition 2.2.3. Let A be a set of parameters. We say that P is A-invariant if for

every Ψ ∈ P and every A-automorphism σ, the partial type σ(Ψ) is also in P .

If studying a type q ∈ S(A), internal to a family of types P , what is needed

for most classical results to hold is P to be A-invariant. In practice, we will always

consider one of two situations: either parameters for types in P are contained in A

(we say P is over A), or P is the family of all U -rank one types. In either case,

invariance is immediate.

A canonical choice for the family P is, as stated in the previous paragraph, the

family of all types of U -rank one. The main reason to consider this family is that

any type, in a superstable theory, will be constructed as an iterated fibration with

P-internal fibers.

Definition 2.2.4. The type p ∈ S(A) is said to be P-analysable if for any a |= p,

there are a0 = a, a1, · · · , an such that for all i:

• ai+1 ∈ dcl(aiA)

• tp(ai/ai+1A) is P-internal

Theorem 2.2.5. In a superstable theory of finite rank, any type is P-analysable,

where P is the family of all Lascar rank one types.

Hence internality is of crucial importance for the study of superstable theories of

finite rank.

To prove this, one needs to consider non-orthogonality to families of partial types:

Definition 2.2.6. The stationary type q ∈ S(A) is said to be weakly orthogonal to

the family of types P if for any realization a |= q and any tuple c of realizations of

P|A, we have a |̂
A
c.
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The stationary type q ∈ S(A) is said to be orthogonal to the family of types

P if for any set of parameters B ⊃ A, any realization a |= q|B and any tuple c of

realizations of P|B, we have a |̂
B
c.

Lemma 2.1.26 then becomes:

Lemma 2.2.7. Suppose T is superstable. Any stationary, non algebraic type p ∈

S(A) of finite Lascar rank is non-orthogonal to the family P of types of Lascar rank

one.

Using this, and an induction on Lascar rank, one can prove analysability. A key

lemma is the following:

Lemma 2.2.8. If tp(a/A) is non-orthogonal to an A-invariant family of types P,

then there is b ∈ acl(a) such that tp(b/A) is P-internal and a 6 |̂
A
b.

The proof of this lemma is of interest, as it illustrates techniques frequently used

when working with internality. Thus, we will give a sketch here:

Proof of Lemma 2.2.8. We assume A = ∅ for convenience. By the non-orthogonality

assumption, there is a tuple c ∈ P and a tuple d such that:

1. a 6 |̂
d
c

2. a |̂ d

Let b = Cb(tp(cd/ acl(a))), then b ∈ acl(a). We have cd |̂
b
acl(a). This implies

a 6 |̂ b, as if not, we would get a |̂ bcd, a contradiction. As for internality, notice that

b ∈ dcl((cidi)i=1···n), a Morley sequence in tp(cd/ acl(a)). As a |̂ d, forking calculus

yields a |̂ d1 · · · dn, and thus b |̂ d1 · · · dn, as b ∈ acl(a). Moreover, by invariance,

all ci are in P , which yields internality of tp(b/∅).
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Let us discuss some basic results regarding internality. Recall that in the defini-

tion, we had to introduce extra parameters B. This is the key point, and knowing

where to find these parameters is crucial:

Lemma 2.2.9. Let A be a small set of parameters. Suppose P is a family of partial

types over A, and q is a P-internal stationary type over A. Then there exist a partial

A-definable function f(y1, · · · , ym, z1, · · · , zn), a sequence a1, · · · , am of realizations

of q, and a sequence Ψ1, · · · ,Ψn of partial types in P, such that for any a realizing

q, there are ci realizing Ψi, for i = 1 · · ·n, such that a = f(a1, · · · , am, c1, · · · , cn).

Hence internality is witnessed by a definable function, and the extra parameters

can be chosen to be a sequence of realizations of q. The tuples a1, · · · , am of this

lemma are called a fundamental system of solutions for q over P .

In fact we will define, for any q:

Definition 2.2.10. Suppose the type q is internal to P . Then a tuple a of realizations

of q is said to be a fundamental system of solutions for q over P is for any b |= q, we

have b ∈ dcl(a,P).

If some (any) realization of q is a fundamental solution for q, then q is said to be

a fundamental type.

By carefully examining the proof of 2.2.9 in [29], we can obtain the following

refinement, which will be useful:

Fact 2.2.11. The a1, · · · , am of Lemma 2.2.9 can be chosen to be independent real-

izations of q.

Hence any P-internal type q has a fundamental system of solutions consisting of

independent realizations.

A lot of the structural power of internal types come from the following classical

result, due to Hrushovski at this level of generality:
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Theorem 2.2.12. Suppose q ∈ S(A) is internal to a family of types P over A, an

algebraically closed set of parameters. Then there are an A-type-definable group G

and an A-definable group action of G on the set of realizations of q, which is naturally

isomorphic (as a group action), to the group Aut(q/P , A) of permutations of the set

of realizations of q, induced by automorphisms of M fixing P ∪ A pointwise.

The group Aut(q/P , A) is called the binding group of q over P .

Using this Theorem, one can recover type-definable stable groups from internal-

ity, an omnipresent phenomenon in finite rank theories. Stable groups are rather

well-behaved objects, and have been studied by model theorists and group theorists

alike. The reader is invited to consult [35] for an introduction to this rich subject.

Hence, it should be of no surprise that binding groups, arising from the universal phe-

nomenon of internality, are frequently used to prove structural results. Let us cite

Hrushovski’s proof that unidimensional theories are superstable [10], Pillay’s study

of imaginaries in pair of algebraically closed fields [31] and Hrushovski, Palaćın and

Pillay’s characterization of the strong canonical base property [16].

By examining the construction of this group in [29], we obtain the following:

Fact 2.2.13. If q is internal to P, and r ∈ S(∅) is the type of a fundamental system

of solutions for q, then the binding groups Aut(q/P) and Aut(r/P) are ∅-definably

isomorphic.

Our methods will rely heavily on the action of definable automorphism groups.

In particular, the following fact, which states that types over P correspond to orbits

under Aut(P), will be crucial:

Fact 2.2.14. If P is a family of partial types, for any two tuples a and b, we have

tp(a/P) = tp(b/P) if and only if there is an automorphism of M, fixing P, and

taking a to b.
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The reader is invited to consult the proof of Lemma 10.1.5 in [38], their proof

easily adapts to yield this fact. Note that if we replace P by some small set A, this

is a basic result. The fact that it holds over P , which is not a small set, is a feature

of stable theories, or more generally, of stably embedded sets.

Lastly, Claim II of the proof of Theorem 7.4.8 in [29] implicitly shows the following:

Fact 2.2.15. For any family of partial types P over ∅ and tuple a, we have that

tp(a/ dcl(a) ∩ P) |= tp(a/P).

Let us note, before moving on, that the machinery of internality and binding

groups is relevant outside of stable theories, using stable embeddedness. A set of

(partial) types P is said to be stably embedded if for any tuple a, we have the

conclusion of fact 2.2.15, that is tp(a/ dcl(a) ∩ P) |= tp(a/P). We refer the reader

to [3] for a nice exposition of stable embeddedness, as well as [13] and [8], where the

corresponding theory of binding groups and groupoids was fully developed.

2.3 (Type)-Definable Groupoids

As we move from internality to relative internality, the relevant algebraic objects

will become groupoids. For the comfort of our reader, we will now quickly introduce

some relevant facts about groupoids. First, the definition:

Definition 2.3.1. A groupoid G is a non-empty category such that every morphism

is invertible.

As a category, the groupoid can then be simply seen as the data of its set of mor-

phisms, its set of objects, along with domain, codomain and (partial) composition.

Since every morphism is invertible, there is also an inverse map.

This data is subject to the standard category theory axioms of existence of an

identity for each object and associativity of composition, as well as existence of an
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inverse for each morphism. With all this set up, it is straightforward to write out

first order axioms for groupoids.

Groupoids generalize groups. Indeed, every object a of a groupoid G gives rise

to the group Mor(a, a), called the isotropy group of a. But we also have the extra

morphisms Mor(a, b), for any a, b ∈ Ob(G). Remark that a group is then exactly a

groupoid with only one object.

The set Mor(a, b) could be empty if a 6= b. This will actually have some meaningful

model-theoretic content, and we can define:

Definition 2.3.2. If G is a groupoid and a ∈ Ob(G), then the connected component

of a is the set {b ∈ Ob(G) : Mor(a, b) 6= ∅}. A groupoid is connected if it has only

one connected component, and totally disconnected if the connected component of

any object is itself.

Since we are interested in definable, or type-definable, objects, we need to define

these notions for groupoids.

Definition 2.3.3. A groupoid G is definable if the sets Ob(G) and Mor(G) are de-

finable, and the composition, domain, codomain and inverse maps are definable. It

is type-definable is these sets and maps are type-definable.

Remark 2.3.4. An important implication of this definition is that the morphism sets

Mor(a, b) are uniformly definable (resp. type-definable) over the parameters (a, b).

Indeed, we have Mor(a, b) = {σ ∈ Mor(G), dom(σ) = a, cod(σ) = b}, which is an

{a, b}-definable condition.

The behavior of groupoids under model-theoretic assumptions seems to be mostly

unexplored so far. They are mostly studied for their relevance to internality, see for

example [7] or [13].
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2.4 Some Interesting Theories

Some stable theories proved to be rich in examples of internal types. In this

dissertation, we will focus mostly on differentially closed fields and, to a lesser extent,

compact complex manifolds.

2.4.1 Differentially Closed Fields

In this section, we will collect some results that will prove useful to explore dif-

ferentially closed fields. Our main reference is [21], Chapter 2, which is a great in-

troduction to differentially closed fields, aimed at model theorists. Any result given

without a reference can be found there. We will also refer to [20], which contains a

more algebraic development of the Galois theory of Picard-Vessiot extensions.

By convention, all rings will be commutative and with a unit. The first definition

is that of a differential ring:

Definition 2.4.1. A differential ring R is a ring equipped with an additive homo-

morphism δ : R → R satisfying Leibniz’s rule: for all xy ∈ R, we have δ(xy) =

δ(x)y + xδ(y).

From this, it is easy to derive the usual rules for derivatives:

Proposition 2.4.2. If x ∈ (R, δ) and n ∈ N, then δ(xn) = nδ(x)xn+1.

Proposition 2.4.3. If x, y ∈ (R, δ) and y is a unit in R, then δ(x
y
) = δ(x)y−xδ(y)

y2
.

Examples include the trivial derivation δ(x) = 0 for any ring R, or C∞ functions

on a real interval with the usual derivation.

Just as the right objects to quotient rings are ideals, quotienting differential rings

is done via differential ideals:

Definition 2.4.4. Let R be a differential ring. An ideal I of R is said to be a

differential ideal if for any a ∈ I, we have δ(a) ∈ I. We can then form the quotient

differential ring R/I.
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If A ⊂ R, we denote < A > the differential ideal generated by A.

Polynomials rings also carry some natural differential rings structure:

Example 2.4.5. Let R be a ring, we define a differential ring structure on R[X] by

setting δ(r) = 0 for all r ∈ R and δ(X) = 1. This is enough to prescribe the value of

δ on any polynomial, as we can apply Leibniz’s rule.

We also can define an analogue of polynomial rings, called differential polynomial

rings:

Definition 2.4.6. Let (R, δ) be a differential ring, we define R{X}, the ring of

differential polynomials over R, by letting R{X} = R[X1, X2, · · · ] and extending δ

by setting δ(Xi) = Xi+1.

We will often denote δ(X) by X ′ and δ2(X) by X ′′. Moreover, for any n, we will

write δn(X) as X(n).

Definition 2.4.7. If f ∈ R{X}, the order of f is the largest n such that X(n) appears

in f .

We can define rings of differential polynomials in many variables K{X1, · · · , Xn}

in the exact same fashion.

Of great importance in the study of differential rings are the constants :

Definition 2.4.8. If (R, δ) is a differential ring, we denote CR the kernel of δ, or

simply C when there is no ambiguity. It is called the constants of R.

In this dissertation, we will be mainly concerned with differential fields. One

can develop a theory for differential fields of positive characteristic, but its study is

outside of the scope of this thesis (see [39]). Hence in this chapter, all our fields will

be of characteristic zero. Note that if K ⊂ L are differential fields and α ∈ L, then

the set I = {f ∈ K{X}, f(α) = 0} is a prime differential ideal of K{X}.
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There are analogues of Hilbert’s Basis Theorem and Primary Decomposition The-

orem for differential fields. To state them, we will need to define the following:

Definition 2.4.9. Let R be a differential ring and I ⊂ R be an ideal. We denote
√
I

the smallest radical differential ideal containing I (recall that an ideal I is radical if

whenever an ∈ I for some n, then a ∈ I).

A radical differential ideal I is finitely generated if there are a1, · · · , an ∈ R such

that I =
√
< a1, · · · , an >.

We can now state our two theorems:

Theorem 2.4.10 (Ritt-Raudenbush Basis Theorem). Let K be a differential field.

Then every radical differential ideal of K{X1, · · · , Xn} is finitely generated.

This is the analogue of Hilbert’s Basis Theorem, which can be used to prove:

Theorem 2.4.11 (Decomposition Theorem). Let K be a differential field. Any radi-

cal differential ideal in K{X1, · · · , Xn} is the intersection of a finite number of prime

differential ideals.

A proof of the Ritt-Raudenbush Theorem is given in [21]. It requires to dive a bit

deeper into differential polynomial rings, and we will skip the proof. However, this

theorem, as well as the Decomposition Theorem, will always be in the background of

our work.

In studying differential fields, there are many ways to generate rings and fields.

We summarize the ones we’ll use here:

Notation. Let k ⊂ K be differential fields and S ⊂ K, we denote:

• k[S] the ring generated by k and S

• k(S) the field generated by k and S

• k{S} the differential field generated by k and S
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As this dissertation’s main subject is model theory, we do need to specify a lan-

guage to study differential fields, as well as axioms in this language.

Definition 2.4.12. The language Ld−r of differential rings consists of the language

of rings, i.e. binary function symbols +,−, · and constant symbols 0 and 1, together

with an extra unary function symbol δ.

The Ld−r-theory of differential rings (resp. fields) is given by the theory of rings

(resp. fields) together with axioms stating additivity of δ and Leibniz’s rule.

From the point of view of model theory, some of the most well-behaved infinite

fields are algebraically closed fields, as their theory is strongly minimal. The differ-

ential algebraic analogues are differentially closed fields. Their theory is given by the

following axioms:

Definition 2.4.13. The Ld−r theory DCF0 of diffentially closed fields of charac-

teristic zero is given by axioms for differential fields, and for any differential poly-

nomials f and g such that the order of g is less than the order of f , the axiom

∃xf(x) = 0 ∧ g(x) 6= 0.

It can easily be proved using compactness and rings of differential polynomials

that differentially closed fields exist. Here are a few useful facts:

Fact 2.4.14. The theory DCF0 of differentially closed fields of characteristic zero:

• is complete and model complete

• has quantifier elimination

• has elimination of imaginaries

• is ω-stable of Morley rank ω

One can prove that DCF0 is the model companion of the theory of differential

fields of characteristic zero. Note that the theory of differential fields of characteristic
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p also have a model companion, denoted DCFp. However, this theory is not as well-

behaved, in particular it is not ω-stable (but it is stable).

Let M |= DCF0 be a monster model. As DCF0 is ω-stable, given a tuple a ∈ DCF0

and a set of parameters B, there are two competing notions for the rank of a over

B, the Morley rank and Lascar rank of tp(a/B). If the set B is a a field k, there is a

third notion, which we will call the dimension of a over k and denote dim(a/k), given

by the transcendence degree of k{a}, the differential field generated by a, over k.

We will callX a differential algebraic variety if it is the zero-set of a finite collection

of differential polynomial equations in M. In particular, such an X is definable and it

has a smallest differential field of definition, denoted k. Namely, the set X is defined

by polynomials with coefficients in k, and k is the smallest differential field over which

such a definition exists. We can then define the dimension of X, denoted dim(X), as

maxa∈X{dim(a/k)}.

The structure of strongly minimal sets in DCF0 turns out to be extremely rich,

while still respecting Zilber’s trichotomy. There are example of disintegrated, non

disintegrated locally modular and non-locally modular strongly minimal set. More-

over, both the locally modular and non-locally modular cases are well understood and

classified. However, classifying disintegrated strongly minimal sets is still an ongoing

project in model theory.

Recall that if M |= DCF0, the constants of M is a definable set given by the

formula δ(x) = 0. We denote it C(M), or C when there is no ambiguity. One can

easily prove:

Fact 2.4.15. If M is a differentially closed field, then its ring of constants C(M) is

an algebraically closed field.

In the non-locally modular case, it can be shown (see [32]) that any non-locally

modular strongly minimal set is non-orthogonal to the constants. Hence, studying
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internality to non-locally modular strongly minimal sets is equivalent to studying

internality to the constants.

A well know class of sets internal to the constants are solution sets of homogeneous

linear differential equations. That is, an equation of the form L(X) =
n∑
i=1

aiX
(i) = 0

for some n and ai ∈M |= DCF0. Using some linear algebra, one can prove:

Theorem 2.4.16. Let M |= DCF0 and L(X) = 0 be a homogeneous linear differential

equation. Then there are x1, · · · , xn ∈M, solutions of L(X) = 0, linearly independent

over C(M), such that the solution set for L(X) = 0 in M is exactly the linear span

of x1, · · · , xn over C(M).

These equations are the start of a very rich Galois theory, based on Picard-Vessiot

extensions:

Definition 2.4.17. Let l/k be differential fields. We say that l is a Picard-Vessiot

extension of k if there is a homogeneous linear differential equation L(X) = 0 and

x1, · · · , xn a fundamental system of solutions such that l = k{x1, · · · , xn} and Ck = Cl.

We define the order of l/k as the order of the linear differential polynomial L.

The following can be found in [20]:

Theorem 2.4.18. Let l/k be a Picard-Vessiot extension of order n, and G(l/k) be

the group of differential field automorphisms of l fixing k pointwise. Then G(l/k) is

isomorphic to an algebraic subgroup of Gln(Ck)

From a model-theoretic perspective, note that any homogeneous linear differential

equation L(X) = 0 gives rise, in M |= DCF0, to a Picard-Vessiot extension. Indeed,

one can consider the fields k = C(M){a1, · · · , an} and l = k{x1, · · · , xn} (keeping

the same notations). Then l/k is a Picard-Vessiot extension. Moreover, the set

L(X) = 0 is definable and C-internal. Its binding group is the same as the Galois

group of Theorem 2.4.18.

33



For a thorough introduction to differential Galois theory, we refer the reader to

[20].

In this dissertation we will often go one step further and study types analysable

over the constants. A systematic way to produce analysable types from an inter-

nal one is to consider its preimages under either the derivative of the logarithmic

derivative. Recall that the logarithmic derivative is defined as δ log(x) = δ(x)
x

for any

x ∈M.

We have the following easy fact:

Fact 2.4.19. Let a ∈ M, a differentially closed field. Then the sets δ−1(a) and

δ log−1(a) are C internal. Moreover, the binding group of δ−1(a) is a definable sub-

group of Ga(C) (thus either the whole group or trivial), and the binding group of

δ log−1(a) is a definable subgroup of Gm(C) (thus either the whole group or a finite

cyclic group).

Therefore, again fixing M |= DCF0 and p a C-internal type, we have that any

type extending δ−1(p) = {α ∈M, δ(α) |= p} or δ log−1(p) = {α ∈M, δ log(α) |= p} is

2-analysable over the constants.

Note that in some cases, these types are actually internal to the constants. For

example, if one consider q to be the generic type of the constants, then δ−1(q) is the

generic type of the differential-algebraic variety given by x′′ = 0, which is C-internal

as the solution set of a linear differential equation. By contrast, one can prove that

δ log−1(q) is not even almost C-internal. See [4] for a pleasant proof of that fact.

The question of when exactly are the types δ−1(q) and δ log−1(q) internal does

not have a general solution, but much progress has been made recently. We invite

the reader to consult [17] for a systematic construction of strictly 2-analysable types

of the form δ log−1(q), and [18] for a partial characterization if q is of Morley rank

one.
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To prove that types obtained by such preimage constructions are not internal, we

will usually have to use one of the following:

Lemma 2.4.20 ([20], Remark 1.11.1). If E = F (z) is a differential field extension

with δ log(z) ∈ F , then either z is transcendental over F or zn ∈ F for some n > 0.

and:

Lemma 2.4.21. If E = F (z) is a differential field extension with δ(z) ∈ F , and

CE = CF , then either z is transcendental over F or z ∈ F .

Proof. If z is not transcendental over F , then there is a polynomial P (X) = Xn +
n−1∑
i=0

aiX
i ∈ F [X] such that P (z) = 0. We can pick P to be the minimal polynomial

of z over F .

Because δ(z) ∈ F , we have that deg(δ(P (z))) = n−1, and its dominant coefficient

is δ(an−1) + nδ(z). By minimality of P , we must have δ(an−1) + nδ(z) = 0, and this

yields that z = can−1, for some c ∈ CF . Hence z ∈ F .

2.4.2 Compact Complex Manifolds

In this section, we introduce some basic model theory of compact complex man-

ifolds. As we will only spend limited time in the realm of complex geometry, our

introduction will be somewhat succinct, and drawn from Section 2 of [22]. We invite

the reader to consult [22] for a more thorough presentation, [23] for a survey of the

model theory of compact complex manifolds, as well as [24] for material related to

Chapter 4, Section 4.4. We will, for the most part, repeat the material contained in

these papers, and all results, unless explicitly mentioned, are from there.

The model theory of compact complex manifolds was first considered by Zilber

in [40], where it is proved that they are amenable to model-theoretic methods. More
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precisely, the structure given by one compact complex manifold, considered in a

natural language, is ω-stable of finite Morley rank.

Recall that any of these variety is equipped with the (analytic) Zariski topology,

which closed sets are locally given by the vanishing of holomorphic functions. This

is a noetherian topology, coarser than the euclidian topology.

From this Zariski topology, we can construct a first order theory, called CCM. We

will consider the structure A equipped with a sort for each compact complex variety.

The language L consists of a predicate for each analytic subset of any product of

sort (thus any holomorphic function, for example). By itself, each sort has quantifier

elimination and is of finite Morley rank. Moreover, CCM eliminates imaginaries.

We will work in A, a monster model of Th(A). Note that every point a ∈ A,

as a compact complex variety, is a constant in our language, thus A ⊂ dcl(∅) ⊂

A. Considering such a non-standard model has no equivalent in complex analytic

geometry, and we need to make sense of what these new elements correspond to. As

we are model-theorists, this amounts to describing types tp(a/b), where a, b ∈ A.

Just as in algebraic geometry, the notion of genericity will play an essential role,

allowing us to give concrete meaning to types as generic points:

Definition 2.4.22. Let X be an irreducible Zariski closed set from A. The generic

type of X over A is defined by:

p(x) = {x ∈ X} ∪ {x /∈ F, F proper Zariski closed subset of X}

A generic point of X over A is a realization of p.

By quantifier elimination and noetherianity of the Zariski topology, this is indeed

a complete, consistent type. Note that since any point of A is in our language, types

over A are really just types over the empty set.

By saturation of A, every Zariski closed set of A has a generic point. Moreover,
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if we pick any a ∈ A, the type p = tp(a/∅) is the generic point of some Zariski closed

set X in A, again by noetherianity. We call X the locus of a (and of p). Thus, types

of non-standard points over ∅ simply correspond to generic points of Zariski closed

sets.

We only have definable sets and types over non-standard parameters left to de-

scribe. By quantifier elimination, every definable set in A is of the form:

Z(A)s = {y ∈ A : (s, y) ∈ Z(A)}

where X and Y are sorts of A, Z ⊂ X × Y is definable, and s ∈ X(A). If Z can be

chosen Zariski closed, then we say that Z(A)s is a non-standard Zariski closed set.

Again by quantifier elimination, any definable set in A can be written as a boolean

combination of non-standard Zariski closed sets.

So any non-standard Zariski closed set can be seen as a fiber. Moreover, it can

be though of as the generic fiber of some standard Zariski closed set. More precisely,

let Γ = Z(A)s be as above, and let S ⊂ X be the locus of s. If we consider

T = Z ∩ (S × Y ), we obtain Γ as a generic fiber of the family of Zariski closed

sets:

S × Y ⊃ T S

because it is the fiber over s, which is generic in S.

Moreover, it can be shown that this characterization is unique in the following

sense: if Γ is also given as the generic fiber of some other R ⊂ S × Y , there there is

a Zariski open set U ⊂ S such that for any u ∈ S, we have Tu = Ru.

Using this characterisation, we can define genericity and locus:

Definition 2.4.23. Let B be a set of parameters, and Γ a non-standard Zariski

closed set. The set Γ is said to be over B if it is definable with parameters from

the set B. If Γ is over B, is is said to be irreducible if it is not the union of two
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proper non-standard Zariski closed sets over B. Finally, it is said to be absolutely

irreducible if it is irreducible over any set of parameters containing B.

Definition 2.4.24. Suppose Γ is an irreducible non-standard Zariski closed set over

B. The generic type p(x) of Γ is defined as:

p(x) = {x ∈ Γ} ∪ {x /∈ Σ,Σ proper nonstandard Zariski closed subset of Γ over B}

and a generic point of Γ over B is a realization of p(x).

If c ∈ A, then there is a smallest non-standard Zariski closed set over B containing

c. We call it the locus of c over B.

Much of the machinery of complex analytic geometry has equivalent for non-

standard Zariski closed sets. First, for any compact complex variety X, the nonstan-

dard Zariski closed subsets of X(A) are the closed sets of a noetherian topology on

X(A).

There is also a dimension, extending the classical one:

Definition 2.4.25. Suppose the non-standard Zariski closed set is obtained as the

generic fiber of the holomorphic map Z → S. The dimension of Z is defined as the

dimension of the general fibers of Z → S.

If a ∈ A, and B is a set of parameters, we can thus define dim(a/B) as the

dimension of the locus of a over B.

Note that for this to be well-defined, all these fibers must have the same dimension,

which is a non-trivial fact. We invite the reader to consult [5], Chapter 3, for a proof

of this.

This dimension is related to forking by:

Theorem 2.4.26. Suppose a and b are tuples and B is a set of parameters. Then a

is independent from b over B is dim(a/B) = dim(a/bB).
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Finally, let us state how stationarity and irreducibility are related:

Proposition 2.4.27. Let Γ be the locus of a over B. Then tp(a/B) is stationary if

and only if Γ is absolutely irreducible.
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CHAPTER 3

GENERALIZING THE BINDING GROUP

3.1 Introduction and Set Up

All through this chapter, we will fix a stable theory T , eliminating imaginaries,

as well as a monster model M of said theory. Recall once again the following classic

result from stability theory:

Theorem 3.1.1. Suppose q ∈ S(A) is stationary and internal to a family of types P

over A, an algebraically closed set of parameters. Then there are an A-type-definable

group G and an A-definable group action of G on the set of realizations of q, which is

naturally isomorphic (as a group action), to the group Aut(q/P , A) of permutations of

the set of realizations of q, induced by automorphisms of M fixing P(M)∪A pointwise.

This theorem is part of a large family of model theory results constructing an

algebraic object from an abstract configuration (another example being Hrushovski’s

group configuration theorem [11]). The goal of this chapter is to expand this theorem

to a slightly different setup, hereby adding another member to this family.

The group Aut(q/P) is the binding group of q over P . Its existence, in a more

restrictive context, was first proved by Zilber in [42]. The previous theorem, at this

level of generality, was proved by Hrushovski in [10]. A proof is also given in [29],

which is the one we will follow to generalize 3.1.1.

Instead of working with internal types, we will use, in this chapter, what we call

relatively internal types. For the rest of this section, we fix an algebraically closed

set of parameters A, a type q ∈ S(A), and a family of partial types P over A.
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Definition 3.1.2. Let q be a complete type over A, and π an A-definable partial

map, defined on any realization of q. The pair (q, π) is said to be relatively P-internal

if for any (some) a |= q, the type tp(a/π(a)A) is stationary and P-internal.

Note that if a |= q, the set {x |= q, π(x) = π(a)} is the set of realizations of a

complete type, denoted qπ(a) in the rest of this chapter.

This definition might seem arbitrary at first, but relative internality does appear

regularly in the literature, albeit not in a formalized way. The two main sources of

relatively internal pairs are:

• Internal types: if tp(a/b) is P-internal, then (tp(ab), π) is relatively internal,
with π the projection on the b-coordinate.

• Analysability: if tp(a/∅) is P-analysable, then there is b ∈ dcl(a) such that
tp(a/b) is P-internal. Thus b = π(a) for some ∅-definable function π, and
(tp(a), π) is relatively P-internal.

In the presence of a relatively internal pair, Theorem 2.2.12 equips us with a type

definable binding group Aut(qπ(a)/P , A) for each π(a), acting on the fiber qπ(a)(M).

However, this is not the whole story: there is in fact a groupoid action here.

Observe that rather than considering only automorphisms of fibers, we could

consider any partial automorphism between any two fibers. More specifically, let us

define a groupoid G(q, π/P , A) as follows:

• its set of objects is the type-definable set π(q)(M)

• for any two π(a), π(b) ∈ Ob(G(q, π,P , A)), let Mor(π(a), π(b)) consists of bijec-
tions from qπ(a)(M) to qπ(b)(M), induced by automorphisms of M fixing P ∪ A
pointwise.

Note that for each π(a), this means that Mor(π(a), π(a)) = Aut(qπ(a)/P , A). The

groupoid action is defined by letting X = {(σ, a) ∈ Mor(G)×q(M) : dom(σ) = π(a)},

and letting the action map be:
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X → q(M)

(σ, a)→ σ(a)

We can now state the main result of this chapter:

Theorem 3.1.3. The groupoid G is isomorphic to an A-type-definable groupoid, and

its natural groupoid action on realizations of q is A-definable.

Hence the binding groups Aut(qπ(a)) are uniformly type-definable, and fit together

in a type-definable groupoid.

3.2 Construction of the Relative Binding Groupoid

Recall our working assumptions: T is a stable theory eliminating imaginaries, and

M is a monster model of T . Theorem 3.1.3 is stated over any algebraically closed set

A, but we will here assume, without loss of generality, that we are working over ∅,

and that ∅ = acl(∅).

Hence we fix a family P of partial types over ∅, as well as q ∈ S(∅), and an

∅-definable map π such that (q, π) is relatively P internal. So for all a |= q, the type

qπ(a) = tp(a/π(a)) is stationary and P-internal.

For any a |= q, the set q(x)∪{π(x) = π(a)} is the set of realizations of a complete

type, denoted qπ(a). To ease notation, if a is a tuple of realizations of q with same

image under π, we will denote π(a) their common image.

Recall that there is a groupoid G, whose objects are given by π(q)(M), and mor-

phisms Mor(π(a), π(b)) by the set of bijections from qπ(a)(M) to qπ(b)(M), induced by

automorphisms of M fixing P pointwise, and taking π(a) to π(b). Our goal is to prove

that this groupoid, as well as its action on realizations of q are ∅-type-definable. We

now start the proof, which follows closely the proof of Theorem 7.4.8 from [29]:

42



Proof of Theorem 3.1.3. First note that the objects are the ∅-type-definable set π(q).

So what we have to show is that the set of morphisms is ∅-type-definable, as well as

domain and codomain maps, and composition.

Note that since each π-fiber is P-internal, we can apply Lemma 2.2.9 to any of

them, so each type qπ(a) has a fundamental system of solution. The first step of the

proof is to show that these fundamental systems can be chosen uniformly, in the

following sense:

Claim 3.2.1. There exist r ∈ S(∅), a partial ∅-definable function f(y, z1, · · · , zn), a

sequence Ψ1, · · · ,Ψn of partial types in P. These satisfy that for each π(a) |= π(q),

there is a |= r such that π(a) = π(a), and for any other a′ |= qπ(a), there are ci

realizing Ψi, for i = 1 · · ·n, with a′ = f(a, c1, · · · , cn).

Proof. Let π(a) be a realization of π(q). Applying Lemma 2.2.9 to qπ(a) yields a

partial π(a)-definable function f(y1, · · · , ym, z1, · · · , zn), a sequence a1, · · · , am of

realizations of qπ(a), and a sequence Ψ1, · · · ,Ψn of partial types in P , such that

qπ(a) ⊂ f(a,Ψ1(M), · · · ,Ψn(M)).

Denote a = (a1, · · · , am), and r = tp(a/∅). Remark that since π(a) = π(a) ∈

dcl(a), the function f is actually ∅-definable. By invariance, we see that f, r and

Ψ1, · · · ,Ψn satisfy the required properties.

We will now fix r, f be as in Claim 3.2.1, and Φ(x) = Ψ(x1)∪· · ·∪Ψ(xn). Fix π(a),

π(b) and a realization a of r in π−1(π(a)). Consider the set X = {(a, b) : tp(a) =

tp(b) = r, tp(a/P) = tp(b/P)}, it is the set we will use to encode morphisms. We

have:

Claim 3.2.2. The set X is ∅-type-definable.

Proof. Fact 2.2.15 yields that tp(a/ dcl(a)∩P) |= tp(a/P). Consider the set {λi(x) :

i ∈ I} of partial ∅-definable functions defined at a with values in P (and these are the
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same at every realization of r). Then tp(a/P) = tp(b/P) if and only if λi(a) = λi(b)

for all i ∈ I. Therefore X = {(a, b) : tp(a) = tp(b) = r, λi(a) = λi(b) for all i ∈ I},

which is an ∅-type-definable set.

Let ra = tp(a/P). We then have the following:

Claim 3.2.3. The map from Mor(π(a), π(b)) to ra(M) ∩ {x : π(x) = π(b)} taking σ

to σ(a) is a bijection.

Proof. First injectivity: suppose σ(a) = τ(a). Every element of π−1(π(a)) ∩ q(M)

is written as f(a, c), for some c |= Φ, and σ(f(a, c)) = f(σ(a), σ(c)) = f(τ(a), c) =

τ(f(a, c)), so τ = σ.

For surjectivity, given b |= ra, since a and b have the same type over P , by Fact

2.2.14, there is an automorphism of the monster model, fixing P , and taking a to b.

The restriction of this automorphism to qπ(a)(M) belongs to Mor(π(a), π(b)).

By Claim 3.2.3, for any (a, b) ∈ X, there is a unique σ ∈ Mor(π(a), π(b)) such that

σ(a) = b. And for any a |= r and σ ∈ Mor(π(a), π(b)), we also have (a, σ(a)) ∈ X.

However, this correspondence may not be injective: for any σ ∈ Mor(π(a), π(b)),

there are multiple elements of X corresponding to it. We will solve this problem with

an equivalence relation.

Claim 3.2.4. There is a formula ψ(x1, x2, y, z) such that for any σ ∈ Mor(G),

any a |= r, any a |= q such that dom(σ) = π(a) = π(a) and any b, we have

|= ψ(a, σ(a), a, b) if and only if b = σ(a).

Proof. By the proofs of Claim 3.2.2 and Claim 3.2.1, if a, b realise r, with λi(a) = λi(b)

for all i, and c1, c2 realise the partial type Φ of Claim 3.2.1, then f(a, c1) = f(a, c2)

if and only if f(b, c1) = f(b, c2) (and these are well defined). By compactness, there
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is a formula θ(w) and a finite subset J ⊂ I such that the previous property is true

replacing Φ by θ and I by J .

Let the formula ψ(x1, x2, y, z) be ∃w(f(x1, w) = y∧f(x2, w) = z∧θ(w)). We now

check that this formula works. Suppose first that a, σ(a), a, b satisfy it. Then there

is c |= θ(w) such that f(a, c) = a and f(σ(a), c) = b.

But as a |= q, there is also d |= Φ such that f(a, d) = a. Since d |= Φ, it is a

realization of P , hence σ(a) = σ(f(a, d)) = f(σ(a), d).

So f(a, c) = a = f(a, d), the tuple d is a realization of Φ, and f(σ(a, d)) = σ(a).

By choice of ψ, this implies b = f(σ(a), c) = f(σ(a), d) = σ(a).

Conversely, suppose that b = σ(a). Since a |= r and dom(σ) = π(a) = π(a), there

is c |= Φ such that f(a, c) = a. Therefore b = σ(f(a, c)) = f(σ(a), c), so we can take

c to be the w of the formula.

Remark that the content of this proposition really is that X ’acts’ on q definably,

witnessed by the formula ψ. In what follows, we will identify elements of X if their

action coincides, which will yield definability of the groupoid.

More precisely, define an equivalence relation E on X as (a1, b1)E(a2, b2) if and

only if π(a1) = π(a2) and for some σ ∈ Mor(G), we have σ(a1) = b1 and σ(a2) = b2.

So (a1, b1)E(a2, b2) if and only if the tuples (a1, b1) and (a2, b2) represent the same

morphism σ. Then the following is true:

Claim 3.2.5. E is relatively ∅-definable on X ×X.

Proof. Recall that we denote tp(a/π(a)), for a |= q, by qπ(a). We also denote rπ(a) =

tp(a/π(a)), for some a |= r with π(a) = π(a).

We first show that (a1, b1)E(a2, b2) if and only if π(a1) = π(a2) and for any

a |= qπ(a1)|a1,a2,b1,b2 we have ∀zψ(a1, b1, a, z)↔ ψ(a2, b2, a, z).
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The left to right direction is immediate. So assume that the right-hand condition

holds. There are σ, τ ∈ Mor(G) with σ(a1) = b1 and τ(a2) = b2. Let a3 |= rπ(a1) be

independent from a1, a2, b1, b2. If we let a3 = (a3,1, · · · , a3,n), then by independence,

we have ∀zψ(a1, b1, a3,i, z)↔ ψ(a2, b2, a3,i, z), for all 1 ≤ i ≤ n. Hence σ(a3) = τ(a3).

Let a′ be any realization of qπ(a1). Then a′ = f(a3, c) for some c, since a3 is a

realization of rπ(a1). So σ(a′) = σ(f(a3, c)) = f(σ(a3), c) = f(τ(a3), c) = τ(a′). This

is true for any realization a′ of qπ(a1), so τ = σ.

Notice that the right-hand condition is equivalent to a formula over π(a1) because

the stationary type qπ(a1) is definable over π(a1). So if we fix π(a) |= π(q), there is

a formula θπ(a)(z1, t1, z2, t2, y) over ∅ such that for any a1, a2 |= rπ(a), and any b1, b2,

we have (a1, b1)E(a2, b2) if and only if θπ(a)(a1, b1, a2, b2, π(a)). A priori, this formula

θπ(a) depends on π(a), hence we cannot yet conclude that E is relatively definable,

let alone relatively ∅-definable. However, if we can prove that for any a, b |= q the

formulas θπ(a)(z1, t1, z2, t2, π(a)) and θπ(b)(z1, t1, z2, t2, π(a)) are equivalent, we would

get relative ∅-definability.

Note that the formula θπ(a) we obtained is a defining scheme for a formula in the

stationary type qπ(a) = tp(a/π(a)). We will use this to show the desired equivalence.

Let π(a), π(b) |= π(q), and σ an automorphism such that σ(π(a)) = π(b). Let

φ(x, y, z) be a formula over ∅. Since qπ(a) and qπ(b) are definable and stationary, there

are defining schemes θπ(a)(z, π(a)) (respectively θπ(b)(z, π(b))) for φ(x, y, z) and qπ(a)

(respectively qπ(b)), and the formulas θπ(−)(z, y) are over the empty set. Now, let c

be a tuple, and a′ a realization of qπ(a)|c, the unique non-forking extension of qπ(a) to

{π(a), c}. Then:
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θπ(a)(c, π(a))⇔ φ(x, π(a), c) ∈ qπ(a)|c

⇔|= φ(a′, π(a), c)

⇔|= φ(σ(a′), π(b), σ(c))

⇔ φ(x, π(b), σ(c)) ∈ qπ(b)|σ(c) because σ(a′) |= qπ(b)|σ(c)

⇔ θπ(b)(σ(c), π(b))

⇔ θπ(b)(c, π(a))

Applying this to the formula ∀wψ(z1, t1, x, w) ↔ (ψ(z2, t2, x, w) ∧ π(z1) = y =

π(z2)) and the qπ(a), where z = (z1, t1, z2, t2), we obtain, for any π(a), π(b) realiza-

tions of π(q), that |= θπ(a)(a1, b1, a2, b2, π(a)) if and only if |= θπ(b)(a1, b1, a2, b2, π(a)).

Thus, we can fix π(b), and use the formula θπ(b) to obtain for any π(a) |= π(q), for any

a1, a2 |= rπ(a) and any b1, b2, that (a1, b1)E(a2, b2) if and only if θπ(b)(a1, b1, a2, b2, π(a)).

So θπ(b) is the formula defining E.

Hence we obtain an ∅-type-definable set X/E. But we had, by Claim 3.2.3, a

map from X to Mor(G). And (a1, b1)E(a2, b2) if and only if they have the same

image under this map. Therefore we have obtained a bijection from X/E to Mor(G).

Notice that this also yields ∅-definability of domain and codomain: since the maps

are represented by elements in the fibers, we can just take images under π of any of

their representative.

We can, using this coding for morphisms of the groupoid, prove that the groupoid

action is relatively ∅-definable. If σ ∈ Mor(π(a), π(b)), we can pick any representative

(a, σ(a)). Then σ(a) is the unique tuple satisfying ψ(a, σ(a), a, z). Since this does

not depend on the representative we pick, we obtain that σ(a) ∈ dcl(σ, a) (and the
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formula witnessing it is uniform in σ and a). This yields that the groupoid action is

relatively ∅-definable.

To finish the proof, we need to construct the composition in an ∅-definable way.

Claim 3.2.6. The composition of Mor(G) is definable.

Proof. Let σ, τ, µ ∈ Mor(G). Let a, b, c |= r, with π(a) = dom(σ), π(b) = dom(τ)

and π(c) = dom(σ). We will show that the equality τ ◦ σ = µ holds if and only if

dom(σ) = dom(µ), cod(τ) = cod(µ), cod(σ) = dom(τ) and for any a |= qπ(a)|a,b,c,σ,τ,µ,

we have:

∀zψ(c, µ(c), a, z)↔ ∃u(ψ(a, σ(a), a, u) ∧ (ψ(b, τ(b), u, z)))

The left to right direction is again immediate. For the right to left direction,

we can proceed as in Claim 3.2.5, and assume that the right-hand side holds. Pick

a2 |= rπ(a)|σ,τ,µ,a,b,c, then, as was done in Claim 3.2.5, we obtain µ(a2) = τ ◦ σ(a2).

But any a′ |= qπ(a) is equal to f(a2, c) for some c tuple of realizations of P . So we get

µ(a′) = f(µ(a2), c) = f(τ ◦ σ(a2), c) = τ ◦ σ(a′). So µ = τ ◦ σ.

Note that since the type qπ(a) is stationary and definable, the right-hand side

condition is equivalent to a formula over dom(σ) = π(a). Moreover, the truth of this

formula does not depend on the representants of σ, τ and µ that we pick. Therefore

it only depends on σ, τ and µ.

Hence, if we fix π(a), we obtain a formula θπ(a)(x, y, z) over π(a) such that for all

σ, τ, µ ∈ Mor(G) with dom(σ) = dom(µ) = π(a), we have θπ(a)(σ, τ, µ) if and only if

µ = τ ◦ σ. Again, this formula is a defining scheme for qπ(a).

We can apply the proof of Claim 3.2.5 to this situation, to get a formula θ over ∅

such that for all σ, τ, µ ∈ Mor(G), µ = τ◦σ if and only if θ(σ, τ, µ). So the composition

in G is relatively ∅-definable.

This finishes the proof: we have obtained a type-definable groupoid, and we
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already saw that its natural action on q(M) is relatively ∅-definable.

Before we discuss how properties of the type and of this groupoid relate to each

other, let us explain how this construction fits into the literature.

Let us start by noting that our groupoid is indeed a generalization of the binding

group: if q is P-internal, we can simply pick a constant e ∈ dcl(∅) (which exists since

T = T eq and acl(∅) = ∅) and let π(a) = e for any a |= q. Our theorem yields a

one-object groupoid, that is, a group, which is the binding group of q over P .

Groupoids related to internality have appeared before, under the name of binding

groupoids. We will now point out the difference between the groupoid just con-

structed and binding groupoids.

Let us recall what these groupoids are, in one of the most tame context, which is

definable sets in totally transcendental theories (see [38] for a proof):

Theorem 3.2.7 (Hrushovski). Let T be totally transcendental, let M be a monster

model of T , and let φ(M) and ψ(M) be two ∅-definable sets. Assume that φ(M) is

ψ internal and non-empty. Then there is an ∅-definable connected groupoid G with

a distinguished object a, and a full ∅-definable subgroupoid in ψ(M)eq. The isotropy

group Mor(a, a) acts definably on φ(M), and this action is isomorphic to the action

of Aut(φ(M)/ψ(M)) on φ(M).

Hence, this theorem allows us to view the binding group Aut(φ(M)/ψ(M)) as an

isotropy group, part of an ∅-definable groupoid.

The main point of the proof is that since φ(M) is ψ(M)-internal, there is a b-

definable set Ob in ψ(M)eq and a c-definable bijection fc,b : φ(M) → Ob. Ignoring

issues of definability, the idea is now to allow these parameters to vary, the b yielding

the objects of our groupoid and the c yielding, via the fc,b, the morphisms.

Thus, this groupoid arises from the non-canonicity of the parameters used to

witness internality of φ(M). The main point of constructing this groupoid from the
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binding group is to capture, canonically and intrinsically to φ(M), the data of an

internal formula.

On the other hand, the groupoid we just constructed arises because if (q, π) is

relatively P-internal, the automorphism group Aut(q/P) and its action on q need

not be (type-)definable. However, its action restricted to maps between two fibers is,

and uniformly so. Thus, the point of constructing our groupoid is to allow binding

groups to vary in families, and to capture the canonical algebraic object arising from

these families. However, these groupoids are not intrinsic to P , as they are not, in

general, internal to P .

The most recent developments regarding binding groupoids are the two papers

[13] and [8]. In the first paper, Hrushovski works under the following set up: a sort

U, stably embedded in another sort U′. The sort U′ is assumed to be internal to U,

it is said that U′ is an internal cover of U. He proves (under some mild technical

assumptions) that the group Aut(U′/U) is part of an ∅-definable groupoid, and that

there is a correspondence between certain definable groupoids in U and internal covers

of U. Haykazyan and Moosa expand on Hrushovski’s results, and also prove that the

previously mentioned correspondence is an equivalence of categories.

Hence internal covers of U are witnessed by objects living in U, and in particular,

their binding group is U-internal. Thinking about analysability, a natural question

is then to ask what canonical object, intrisic to U, captures the data of a varying

family of internal covers. To properly answer this question, the authors introduce

1-analysable covers over some set A. They define a 1-analysable cover as a cover U′

of U with a single new sort S, equipped with an ∅-definable surjective map π : S → A

such that each fiber π−1(a) is internal to U.

In [8], Haykazyan and Moosa prove that under a specific assumption of indepen-

dence of the fibers, Hrushovski’s groupoid construction is uniformly definable across

fibers, giving rise to a definable groupoid from a 1-analysable cover. This is the
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first step in finding out what happens when Hrushovski’s groupoids vary in families.

In the case of non-independent fibers, Hurshovski suggests in [13] that the relevant

algebraic object is a definable simplicial groupoid.

Our work here explores a similar topic. Indeed, notice the similarity between our

notion of relatively internal pair (q, π) and 1-analysable covers, which correspond to

the case where π(q) is P-internal too. We will, in section 3.3, obtain a type-definable

Delta groupoid from any relatively internal pair, and even a simplicial groupoid if

one is willing to drop uniform definability of the isotropy groups. However, our

groupoid once again arises for different reasons, and encodes varying binding groups,

but binding groupoids, encoding non-canonicity of parameters, do not appear.

Thus, our work is in a way orthogonal to Haykazyan, Hrushovski and Moosa’s:

we ignore issues of finding intrinsic binding groups, and instead focus on varying

families of binding groups. The fact that in both cases, the relevant algebraic object

is a groupoid could indicate that there is a unified approach here.

However, there is an obstruction to this: one key property of Hrushovski’s bind-

ing groupoids is that, keeping the same notation, they are internal to the sort U.

Unfortunately, the groupoid we obtain is, in some cases, not internal to the family P ,

as the following result, obtained in collaboration with Omar Léon Sánchez, shows:

Proposition 3.2.8. If G is internal to P and connected, then q is internal to P.

Proof. By internality assumption, there is a set of parameters B such that Mor(G) ⊂

dcl(P , B).

Let a and b be any realizations of q, and let a be a fundamental system of solutions

for tp(a/π(a)). Since G is connected, there is σ ∈ Mor(π(a), π(b)). Moreover, the

tuple b = σ(a) is a fundamental system of solutions for tp(b/π(b)). Therefore, there

is d ∈ P such that b = f(b, d) = f(σ(a), d). But σ ∈ dcl(P , B), therefore b ∈

dcl(P , B, a).
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Hence the question of which object living in P , if any, captures the data of a

relatively internal pair, is still open.

3.3 Various properties of the groupoid, Delta groupoids

This section is dedicated to exploring the relationship between a relatively internal

pair (q, π) and its groupoid G(q, π,P). We will start by examining a very strong

property of the groupoid, called retractability.

3.3.1 Retractability

Retractability was introduced in [7] by Goodrick and Kolesnikov, let us recall

their definition:

Definition 3.3.1. An ∅-type-definable groupoid G is retractable if it is connected and

there exist an ∅-definable partial function g(x, y) = gx,y such that for all a, b objects

of G, we have ga,b ∈ Mor(a, b). Moreover, we require the compatibility condition that

g(b, c) ◦ g(a, b) = g(a, c) for all objects a, b, c (note that this implies ga,a = ida and

g−1a,b = gb,a for all a, b).

In their paper, they use retractability to study groupoids arising from internality,

and uncover a link between retractability and 3-amalgamation. As it turns out,

retractability will have very strong consequences for relatively internal types.

Before delving into these, let us give an equivalent definition, which will be useful

to us:

Remark 3.3.2. An equivalent definition of retractability is given by: there exist an

∅-type-definable group G, and a full, faithful ∅-definable functor F : G → G.

This was proved in [7], we include their proof here for completeness:
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Proof. If we have such a functor F : G → G, we can take ga,b = F−1({idG}) ∩

Mor(a, b), which is a singleton because F is full and faithful. The compatiblity

condition is easily checked, and this is definable uniformly in (a, b).

If G is retractable, then we can construct a relation E on Mor(G) as follows: if

σ ∈ Mor(a, b) and τ ∈ Mor(c, d), then E(σ, τ) if and only if τ = gb,d ◦ σ ◦ gc,a. By the

compatibility condition, this is an equivalence relation, and it is ∅-definable. Now

consider G = Mor(G)/E, and F : G → G the quotient map. The groupoid law of

G goes down to a group law on G. Indeed, if we want to compose σ ∈ Mor(a, b)

and τ ∈ Mor(c, d) in G, notice that E(τ, gd,a ◦ τ), so we can define F (σ) ◦ F (τ) =

F (σ ◦ gd,a ◦ τ). Again by the compatibility condition, this is well defined. Finally, it

is easy to derive the group axioms from the groupoid axioms of G.

For the rest of this subsection, we again assume acl(∅) = ∅, fix a type q ∈ S(∅),

an ∅-definable map π, and a family of types P over ∅, such that (q, π) is relatively

P-internal. We consider the ∅-type-definable groupoid G = G(q, π/P) constructed in

the previous section.

The definition of retractability asks for the groupoid to be connected. Thus,

before delving into the consequences of retractability, it is natural to ask what does

connectedness of G(q, π/P) entails. Following a suggestion of Rahim Moosa, we do so

here. Recall that for a type p ∈ S(∅), we can always consider the group Aut(p/P) of

automorphisms of p(M) fixing P pointwise and induced by automorphisms of M, even

if p is not P-internal and Aut(p/P) is not type-definable. The following proposition

is well-known, but we include a proof here for completeness.

Proposition 3.3.3. For any type p ∈ S(∅), the group Aut(p/P) acts transitively on

p(M) if and only if p is weakly orthogonal to P.

Proof. If p is weakly orthogonal to P , then for any a, b |= p, both a and b are indepen-

dent, over ∅, of any small subset of P . In particular, we have that a |̂ (dcl(a, b))∩P
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and b |̂ (dcl(a, b))∩P , hence by stationarity tp(a/(dcl(a, b))∩P) = tp(b/(dcl(a, b))∩

P). Thus, by Fact 2.2.15, we obtain tp(a/P) = tp(b/P). By Fact 2.2.14, this means

that there is σ ∈ Aut(p/P) such that σ(a) = b. Thus Aut(p/P) acts transitively on

p(M).

If p is not weakly orthogonal to P , there exist a |= p and a tuple c of realizations

of P such that a forks with c over ∅. Taking b |= p|c, we see that tp(a/P) 6= tp(b/P),

thus a and b have different Aut(p/P) orbits, and the action cannot be transitive.

Using this proposition, we obtain:

Corollary 3.3.4. The groupoid G(q, π/P) is connected if and only if π(q) is weakly

orthogonal to P.

Proof. By the previous proposition, it is enough to prove that G = G(q, π/P) is

connected if and only if Aut(π(q)/P) acts transitively on π(q)(M).

Let π(a), π(b) be any two realizations of π(q). If G is connected, then there exist

a morphism σ ∈ Mor(π(a), π(b)). It is induced by an automorphism σ of M fixing P

pointwise. In particular it restricts to σ ∈ Aut(π(q)/P) such that σ(π(a)) = π(b).

Conversely, if Aut(π(q)/P) acts transitively on π(q)(M), then for any π(a), π(b)

realizations of π(q), there is an automorphism σ of M, fixing P pointwise, such that

σ(π(a)) = π(b). This automorphism σ restricts to an element of Mor(π(a), π(b)).

In particular, retractability of G(q, π/P) implies that π(q) is weakly orthogonal

to P . As we will see, it actually imposes much stronger restrictions on (q, π). Our

first result links retractability to products of types:

Theorem 3.3.5. The groupoid G is retractable if and only if there exists a type

p ∈ S(∅), internal to P, with π(q) weakly orthogonal to the family P ∪ {p}, and such

that q = p⊗ π(q) (up to an ∅-definable bijection).
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Proof. If G is retractable, consider the ∅-definable relation xEy ⇔ gπ(x),π(y)(x) =

y. The compatibility condition of retractability implies that this is an equivalence

relation. Let ρ be the quotient map, then ρ(q) is a complete type over the empty set,

and it will be the type p of the theorem.

There is an ∅-definable function s : q(M) → ρ(q)(M) × π(q)(M) sending x to

(ρ(x), π(x)). Since q is a complete type, s(q(M)) is the set of realizations of a complete

type, denoted s(q). But the function s is bijective. Indeed, notice that each E-class

has exactly one element in each fiber of π: each class has at least one element in a

given fiber because G is connected, and no more than one because gπ(a),π(a) = idπ(a).

Therefore we can send (ρ(a), π(b)) to the unique element both in the π(b) fiber and

in the E-class of a, to obtain an inverse of s. In particular π(q) and ρ(q) are weakly

orthogonal, so ρ(q)(M)× π(q)(M) = ρ(q)⊗ π(q)(M). We denote p = ρ(q).

Note that for any π(a), π(b) |= π(q), the morphism gπ(a),π(b) extends to an auto-

morphism of M, fixing P(M) ∪ p(M) pointwise, and sending π(a) to π(b). Thus, by

Proposition 3.3.3, we obtain that π(q) is weakly orthogonal to P ∪ p.

We now just need to prove that p is P-internal. Each E-class has a unique

representant in each π-fiber. Therefore, fixing a |= q, we have p(M) ⊂ dcl(qπ(a)(M)).

But by internality of the fibers, we get qπ(a)(M) ⊂ dcl(a,P), for some tuple a. This

yields p(M) ⊂ dcl(a,P).

Conversely, suppose that q = p⊗ π(q). As π(q) is weakly orthogonal to P ∪ {p},

for any π(a), π(b) |= π(q), there is σ ∈ Aut(M), fixing P(M) ∪ p(M) pointwise, and

such that σ(π(a)) = π(b). Moreover, the restriction of such a σ to an element of

Mor(π(a), π(b)) is unique, denote it gπ(a),π(b). The family g·,· witnesses retractability

of G.

Theorem 3.3.5 immediately yields the following internality criteria:

Corollary 3.3.6. If G is retractable and π(q) is P-internal, then q is P-internal.
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Note that this is far from a necessary and sufficient condition. We will give a

counterexample later in this section.

Recall that retractability yields a definable, full and faithful functor F : G → G,

for some ∅-type-definable group G. This functor will allow us to construct a groupoid

morphism from Aut(q/P)→ G, even when the former group is not type-definable.

Proposition 3.3.7. If G is retractable, there is a morphism R : Aut(q/P) → G,

which is surjective.

Proof. We use the functor F : G → G. For σ ∈ Aut(q/P), note that the restriction

of σ to qπ(a)(M) is an element of Mor(π(a), σ(π(a))). We denote it by σ|π(a). We

can then set R(σ) = F (σ|π(a)). Let us show that R is a surjective morphism R :

Aut(q/P)→ G.

First, we need to prove that R is well defined. To do so, we need to show that for

any b, we have σ|π(b) = gσ(π(a)),σ(π(b)) ◦ σ|π(a) ◦ gπ(b),π(a), by definition of F .

Pick any x with π(x) = σ(π(a)). As g , is an uniformly ∅-definable family of par-

tial functions, we have gσ(π(a)),σ(π(b))(x) = y if and only if gπ(a),π(b)(σ
−1(x)) = σ−1(y),

for any y. Applying σ to the second equality, we get, for all y, that gσ(π(a)),σ(π(b))(x) =

y if and only if σ(gπ(a),π(b)(σ
−1(x))) = y, which yields that σ|π(b) ◦ gπ(a),π(b) ◦ σ|−1π(a) =

gσ(π(a)),σ(π(b)), what we wanted.

Therefore we have a well defined map R : Aut(q/P) → G. It is a morphism

because:

R(σ ◦ τ) = F ((σ ◦ τ)|π(a))

= F (σ|τ(π(a)) ◦ τ |π(a))

= F (σ|τ(π(a))) ◦ F (τ |π(a)))

= R(σ) ◦R(τ)
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For surjectivity, it is enough to prove that for σ ∈ Mor(π(a), π(a)), that there is

τ ∈ Aut(q/P) restricting to σ. This is true by definition of Mor(π(a), π(a)).

Theorem 3.3.5 yielded the existence of a P-internal type p ∈ S(∅), weakly internal

to P∪{π(q)}, such that q(M) is in ∅-definable bijection with p⊗π(q)(M). The group

G is none other that the binding group of p:

Proposition 3.3.8. The group G witnessing retractability is relatively ∅-definably

isomorphic to Aut(p/P), the binding group of p over P (where p is the type of The-

orem 3.3.5).

Proof. Recall that Mor(G) is given by X/E, where X is an ∅-type-definable set, and E

is an ∅-definable equivalence relation. Moreover, the type-definable set X is composed

of pairs of realizations of r, the type introduced in the proof of Theorem 3.1.3. In the

proof Theorem 3.3.5, we constructed an ∅-definable quotient map ρ : q(M)→ p(M).

The type p = ρ(q) is P-internal, hence its binding group Aut(p/P) is similarly given

by the type r′ of a fundamental system of solutions, an ∅-type-definable set X ′ and

an ∅-definable equivalence relation E ′. We can assume that r′ = ρ(r).

For any a |= r, this allows us to define a group morphism:

Pπ(a) : Aut(tp(a/π(a))/P)→ Aut(p/P)

σ = (a, σ(a))/E → (ρ(a), ρ(σ(a)))/E ′

and by construction of ρ, this is an isomorphism. It is relatively a-definable.

We are also given, by the retractability assumption, a relatively ∅-definable full

and faithful functor F : Mor(G) → G. By restriction this yields, for any a |= r, a

relatively π(a)-definable group isomorphism Fπ(a) : Aut(tp(a/π(a))/P)→ G.
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Hence, for any a |= r, the groups G and Aut(p/P) are relatively a-definably

isomorphic via the composition Pπ(a) ◦ F−1π(a). To complete the proof, we need to

show that this morphism is actually relatively ∅-definable. To do so, it is enough

(via a compactness argument) to prove that the graph of Pπ(a) ◦F−1π(a) is fixed by any

automorphism of M.

Claim 3.3.9. For any a, b |= r and g ∈ G, we have Pπ(b) ◦F−1π(b)
(g) = Pπ(a) ◦F−1π(a)(g).

Proof. By the proof of Proposition 3.3.7, if a, b are realizations of r and g ∈ G, then

there is σ ∈ Aut(q/P) such that F−1π(a)(g) is the restriction of σ to Aut(tp(a/π(a))/P)

and F−1
π(b)

(g) is the restriction of σ to Aut(tp(b/π(b))/P). So F−1π(a)(g) = (a, σ(a))/E

and F−1
π(b)

(g) = (gπ(a),π(b)(a), σ(gπ(a),π(b)(a)))/E, as gπ(a),π(b)(a) |= r. We then obtain:

Pπ(b) ◦ F−1π(b)
(g) = Pπ(b)((gπ(a),π(b)(a), σ(gπ(a),π(b)(a)))/E)

= (ρ(gπ(a),π(b)(a)), ρ(σ(gπ(a),π(b)(a))))/E ′

= (ρ(gπ(a),π(b)(a)), σ(ρ(gπ(a),π(b)(a))))/E ′

= (ρ(a), σ(ρ(a)))/E ′ by definition of ρ

= Pπ(a)(a, σ(a)/E)

= Pπ(a) ◦ F−1π(a)(g)

Now let g ∈ G, let (g, Pπ(a) ◦ F−1π(a)(g)) be in the graph of Pπ(a) ◦ F−1π(a), and let µ

be an automorphism of M. We want to show that µ(g, Pπ(a) ◦ F−1π(a)(g)) is also in the

graph of Pπ(a) ◦ F−1π(a).

Claim 3.3.10. We have µ(Fπ(a)) = Fπ(µ(a)).

Proof. This is because the maps F−1π(a) are uniformly π(a)-definable.
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Claim 3.3.11. For σ ∈ Aut(tp(a/π(a))/P), we have µ(Pπ(a)(σ)) = Pπ(µ(a))(µ(σ)).

Proof. The set Mor(G) is ∅-type-definable, hence for any σ ∈ Aut(tp(a/π(a))/P) we

have µ(σ) = τ ∈ Mor(G). In particular, we obtain µ(σ(a)) = τ(µ(a)), which yields:

µ(Pπ(a)(σ)) = µ(Pπ(a)((a, σ(a))/E))

= (ρ(µ(a)), ρ(µ(σ(a))))/E ′

= (ρ(µ(a)), ρ(τ(µ(a))))/E ′

= Pπ(µ(a))((µ(a)), τ(µ(a))/E)

= Pπ(µ(a))(τ)

= Pπ(µ(a))(µ(σ))

Putting everything together, we obtain:

µ(Pπ(a) ◦ F−1π(a)(g)) = µ(Pπ(a)) ◦ µ(Fπ(a))
−1(µ(g))

= Pπ(µ(a)) ◦ F−1π(µ(a))(µ(g)) by Claims 3.3.10 and 3.3.11

= Pπ(a) ◦ F−1π(a)(µ(g)) by Claim 3.3.9

so (µ(g), Pπ(a) ◦ F−1π(a)(µ(g))) belongs to the graph of Pπ(a) ◦ F−1π(a), what we needed to

prove.

Remark that by examining the proof of Theorem 3.3.5, we see that G is also

isomorphic to Aut(qπ(a)/P), for any π(a) |= π(q), i.e. the binding group of a fiber.
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Equipped with all our previous observations, we are now ready to prove the

strongest structural result of this section. Recall that a P-internal type q is said to

be fundamental if it has a fundamental system of solutions consisting of one a |= q,

that is, we have q(M) ⊂ dcl(a,P).

Theorem 3.3.12. If G is retractable and π(q) is P-internal and fundamental, then

q is P-internal and Aut(q/P) is ∅-definably isomorphic to G× Aut(π(q)/P).

Proof. We know from Corollary 3.3.6 that q is P-internal. Let a be a fundamental

system of solutions for q.

Recall that there are two ∅-definable quotient maps π : q(M) → π(q)(M) and

ρ : q(M) → p(M) = ρ(q)(M). The tuples π(a) and ρ(a) are fundamental systems of

solutions for π(q) and ρ(q). As was done in Proposition 3.3.8, we can use this to con-

struct two a-definable surjective group morphisms π : Aut(q/P)→ Aut(π(q)/P) and

ρ : Aut(q/P) → Aut(ρ(q)/P). Using techniques similar to the ones in Proposition

3.3.8, we can prove that these two morphisms are ∅-definable.

Hence we have produced two ∅-definable group morphisms π : Aut(q/P) →

Aut(π(q)/P) and ρ : Aut(q/P) → Aut(ρ(q)/P), both surjective. To obtain the

desired isomorphism, it would be enough to prove that ker(π)∩ ker(ρ) = id and that

any element of Aut(q/P) can be written as the product of an element of ker(ρ) and

an element of ker(π).

Suppose that σ ∈ ker(π)∩ ker(ρ), and let a |= q. Then σ fixes π−1{π(a)} setwise.

But σ ∈ ker(ρ), hence must fix π−1{π(a)} pointwise. Since this is true for any a |= q,

we conclude that σ = id.

Let σ be any morphism in Aut(q/P) and a |= q. Consider gπ(a),π(σ(a)) ∈ G. It

extends to an automorphism τ ∈ Aut(q/P) by Fact 2.2.14, which has to belong to

ker(ρ). We can write σ = τ ◦ τ−1 ◦ σ, so we only need to prove that τ−1 ◦ σ ∈ ker(π).

But π(τ−1 ◦ σ(a)) = π(a) and π(q) is fundamental, so this implies π(τ−1 ◦ σ) = id.
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The assumption that π(q) is a fundamental type may or may not be necessary to

get this result.

Let us put Theorem 3.3.12 to use by showing that internality of q does not imply

retractability of G:

Example 3.3.13. Consider the two sorted structure M = (G,X,LG, ∗) with one

sort being a connected stable group G in the language LG, and the other sort being

a principal homogeneous space X for G, with group action ∗. We will work in Meq,

and the language is LG ∪ {∗}.

One can quickly prove that the sort X has only one 1-type q over ∅, and that this

type is stationary and internal to G, with binding group isomorphic to G.

Assume that there is an ∅-definable normal subgroup H of G, such that the short

exact sequence:

1→ H → G→ G/H → 1

does not definably split.

The group action of G on X defines an equivalence relation E, where the class of

an element a ∈ X is its orbitH∗a. Hence, we can define a map π : X → X/E, sending

a ∈ X to H ∗a. This is ∅-definable, we have Aut(π(q)/G) ∼= G/H and for any a, that

Aut(tp(a/π(a)) = H. The pair (q, π) is relatively G-internal, yielding a groupoid G.

Since G/H acts transitively on π(q), this groupoid is connected. Moreover, we have

a definable short exact sequence:

1→ H → G→ G/H → 1

which, by assumption, is not definably split. However, if G was retractable, Theorem

3.3.12 implies that this sequence would be definably split. Hence G is not retractable,

even though q is G-internal.

Hence retractability is a very strong property of the groupoid: if π(q) is internal, it

implies much more than internality of q. In the next section, we will state a necessary
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and sufficient condition, in terms of groupoids, for q to be internal. However, the

proof will have to wait for the next chapter, as we will then have better tools.

3.3.2 The Simplicial Approach

In [13], Hrushovski suggests capturing the data of a relatively internal cover (de-

fined just like relatively internal types: a projection with internal fibers) via a de-

finable simplicial groupoid. Inspired by his suggestion, we will construct, in this

section, a type-definable Delta groupoid from any relatively internal pair. We will

also show that while a simplicial groupoid is associated to any relatively internal pair,

it fails to be type-definable. Let us note once again that our groupoids do not answer

Hrushovski’s question, as they do not arise from non-canonicity of parameters. We

refer the reader to the discussion at the end of Section 3.2 for more details.

Let us start by defining Delta groupoids, which have less structure than simplicial

groupoids.

Definition 3.3.14. The category ∆̂ is the category with finite ordinals as objects,

and strictly order preserving functions as morphisms.

We can now give the very concise categorical definition of a Delta groupoid:

Definition 3.3.15. Given a category C, a Delta object in C is a functor F : ∆̂op → C.

A Delta groupoid is a Delta object in the category of groupoids.

For our purposes, the following equivalent definition will be much easier to handle:

Proposition 3.3.16. A Delta groupoid is equivalent to the following data :

1. For every integer n ∈ N\{0}, a groupoid Gn

2. For every integer n ∈ N\{0, 1}, and every i ∈ {0, · · · , n}, a groupoid morphism
(that is, a functor) ∂ni : Gn → Gn−1, called a face map

subject to the following condition :
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∂ni ◦ ∂n+1
j = ∂nj−1 ◦ ∂n+1

i for all i < j ≤ n and n ≥ 1.

For a gentle introduction to Delta sets and simplicial sets, we refer the reader to

[6].

Of course, we need to specify what we mean by a (type-)definable Delta groupoid:

Definition 3.3.17. Let A be some set of parameters. A Delta groupoid (Gn)n∈N

is said to be A-(type-)definable if each groupoid Gn and face map ∂ni is A-(type-

)definable.

Remark that we do not ask for uniform definability of the groupoids. And in fact,

in our case, the groupoids will not be uniformly definable. Let us now turn to the

construction of a type-definable Delta groupoid.

Recall that we are working with a family of partial types P over the empty set, a

type q ∈ S(∅), and an ∅-definable function π such that (q, π) is relatively P-internal.

We obtained an ∅-type-definable groupoid G = G(q, π/P) from this configuration.

For each n, we can also consider the product of q with itself n times, denoted q⊗n.

It is the type of n independent realizations of q. For π we get another definable map

π⊗n : q⊗n → π(q)⊗n, by applying π to each of the coordinates. The fibers of π⊗n

are of course P-internal. Finally, for each a |= q⊗n, an easy application of forking

calculus yields that tp(a/π(a)) is stationary. Thus:

Observation 3.3.18. The pair (q⊗n, π⊗n) is relatively P-internal.

Hence Theorem 3.1.3 yields a sequence of groupoids Gn = G(q⊗n, π⊗n/P), with

G1 = G(q, π/P). These will be part of our type-definable Delta groupoid, and we now

only need to construct the face maps.

Intuitively, the groupoid Gn represent the action of Aut(M/P) on the product of

n independent fibers of π. Therefore one’s first instinct is to define the face maps as

restriction maps. Luckily, this is correct, the only difficulty being to make sure these

are definable.
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To do so, we will need to dive back into the construction of G1. Recall that we

started with r, the type of a fundamental system of solutions for the P-internal type

q. We then considered the ∅-type-definable set X = {(a, b), a |= r, b |= r, tp(a/P) =

tp(b/P)}, and proved that there was a relatively ∅-definable equivalence relation E

on X such that Mor(G) is in bijection with X/E.

Crucially, for each n, the type r⊗n is a fundamental type for q⊗n. Hence, the

construction of Theorem 3.1.3 goes through using r⊗n. More precisely, if we define

Xn = {(a, b), a |= r⊗, b |= r⊗n, tp(a/P) = tp(b/P)}, there is a relatively ∅-definable

equivalence relation En on Xn such that Mor(Gn) is in bijection with Xn/En.

This yields ∅-definable functors between the Gn. To see this, let us introduce

some notation: if a = (a1, · · · , an) is a tuple, then for any 1 ≤ i ≤ n, we denote

a∧i = (a1, · · · , âi, · · · an) where the hat means the corresponding coordinate has been

removed. Now, if n > 1, an element σ of Mor(Gn) corresponds to the En-class of

(a, b) = ((a1, · · · , an), (b1, · · · , bn)), where a and b are realizations of r⊗n. For any

1 ≤ i ≤ n, we can then send (a, b)/En to (a∧i, b
∧i

)/En−1. This is well defined, as

(a∧i, b
∧i

) ∈ Xn−1, and ∅-definable.

For each n > 1 and each 1 ≤ i ≤ n, we hence obtain ∅-definable maps:

∂ni : Mor(Gn)→ Mor(Gn−1)

(a, b)/En → (a∧i, b
∧i

)/En−1

and by setting ∂ni (π(a)) = π(a∧i), we can easily check that each ∂ni is an ∅-definable

functor from Gn to Gn−1. The Delta groupoid condition is immediate, so we con-

structed an ∅-type-definable Delta groupoid, using the ∂ni as the face maps. We

denote it by ∆G(q, π/P).

Returning to our first intuition, observe that these face maps have a clear inter-
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pretation as restrictions of partial automorphisms. Indeed, if a = (a1, · · · , an) |= r⊗n

and b = (b1, · · · , bn) |= r⊗n, then an element σ of Hom(Gn)(π(a), π(b)) is a bijection:

σ : tp(a/π(a))(M)→ tp(b/π(b))(M)

which is the restriction of an automorphism of M fixing P pointwise. The element

∂ni (σ) of Gn−1 is then the restriction of σ to a bijection:

∂ni (σ) : tp(a∧i/π(a∧i))(M)→ tp(b
∧i
/π(b

∧i
))(M)

which still is the restriction of the same global automorphism.

To summarize, we have obtained the following:

Theorem 3.3.19. If (q, π) is relatively P-internal, then for all n, the pair (q⊗n, π⊗n)

is relatively P-internal. Moreover, if we denote Gn the groupoid witnessing relative

internality of q⊗n, then the Gn form a Delta groupoid ∆G(q, π/P), using the natural

restriction maps as face maps.

For now, let us focus our attention on the binding groups of the fibers:

Notation. If a |= qn for some n, then the type tp(a/π(a)) is P-internal, and we will

denote Gπ(a) its binding group. It is Mor(π(a), π(a)) in Gn.

The Delta groupoid structure will, in particular, embed these groups into a

projective system. More precisely, consider the directed system {π(a) : π(a) |=

πn(q⊗n) for some n}, with (π(a1), · · · , π(an)) ≤ (π(b1), · · · , π(bm)) if and only if

n ≤ m and π(ai) = π(bi) for all i ≤ n. If π(a) ≤ π(b), the restriction map

Gπ(b) → Gπ(a) is definable, as it is a composition of face maps. These maps are
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then easily checked to form a projective system, and in particular give rise to the

projective limit lim←−Gπ(a).

Note that the maps Gπ(b) → Gπ(a) are not necessarily surjective: it is possible

that some element of Gπ(a) does not extend to a global automorphism fixing π(b).

However, this is the sole obstruction, and notably we can prove:

Remark 3.3.20. If π(q) is P-internal, then there is m ∈ N such that for all k ≥ n ≥

m, all π(a) |= q⊗n, π(b) |= q⊗k, and π(a) ≤ π(b), the map Gπ(b) → Gπ(a) is surjective.

Proof. Let a0 |= q⊗m be such that π(a0) is a fundamental system of solutions for π(q)

(such an a0 exist by Remark 2.2.11). Then any m independent realizations of π(q)

will form a fundamental system of solutions. Hence for any n ≥ m and any a |= q⊗n,

the tuple π(a) is a fundamental system of solutions for π(q).

Fix a |= q⊗n for n ≥ m and π(b) ≥ π(a), consider the map Gπ(b) → Gπ(a), we will

now show it is surjective. So let σ ∈ Gπ(a), it is the restriction to tp(a/π(a))(M) of

an automorphism σ̃ of M. But π(a) is a fundamental system of solutions for π(q),

and σ̃ fixes π(a). Hence σ̃ fixes π(q)(M), and in particular fixes π(b). Therefore σ̃

restricts to an element of Gπ(b), and the image of this element under Gπ(b) → Gπ(a)

has to be σ.

It is now time to state the groupoid criterion for internality announced in the

previous section. The relevant definitions will be:

Definition 3.3.21. The Delta groupoid ∆G(q, π/P) is said to collapse if there is a

tuple a of independent realizations of q such that for any b ≥ a, the map Gπ(b) → Gπ(a)

is injective. It is said to almost collapse if the maps Gπ(b) → Gπ(a) have finite kernel

instead.

and we have:
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Theorem 3.3.22. The type q is internal (respectively almost internal) to P if and

only if and only if the Delta groupoid G collapses (respectively almost collapses) and

π(q) is internal (respectively almost internal) to P.

Although this can be proved using groupoids, a much cleaner proof will be given

in Chapter 4, after we introduce uniform relative internality.

Note that there is always a group morphism Aut(q/P) → Aut(π(q)/P). If π(q)

is P-internal, the target group is type-definable. Moreover, we have the following

corollary of Theorem 3.3.22:

Corollary 3.3.23. If the type q is internal to P, then there is a definable (possibly

over some extra parameters) short exact sequence:

1→ lim←−Gπ(a) → Aut(q/P)→ Aut(π(q)/P)→ 1

and the groups and morphisms are internal to P.

Proof. Set H = ker(Aut(q/P) → Aut(π(q)/P)). Then we have a short exact se-

quence:

1→ H → Aut(q/P)→ Aut(π(q)/P)→ 1

Every group in this sequence is type-definable. Moreover, the left arrow is just

inclusion, so is ∅-definable. As for the right arrow, if σ ∈ Aut(q/P) is represented

by (a, σ(a)), we can simply send it to the class of (π(a), π(σ(a))), so the right arrow

is definable. The groups and morphisms are internal to P . So all we need to do to

finish the proof is show that lim←−Gπ(a) is definably isomorphic to H.

Since q is P-internal the Delta groupoid associated to q, π and P collapses. By

Theorem 3.3.22 there is a tuple b of realizations of q such that Gπ(c) → Gπ(b) is

injective for any π(c) ≥ π(b). Moreover, since π(q) is P-internal, we can also assume,

by Remark 3.3.20, that these maps are isomorphisms, hence lim←−Gπ(a) = Gπ(b). By

extending b we can assume both that b is a fundamental system of solutions for q

and π(b) is a fundamental system of solutions for π(q). This allows us to define
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a morphism Gπ(b) → Aut(q/P) by sending σ ∈ Gπ(b) to the class of (b, σ(b)), it is

well-defined because b is a fundamental system for q. This morphism is a relatively

b-definable map and it is injective, again because b is a fundamental system for q.

But π(b) is a fundamental system for π(q) and σ ∈ Gπ(b) so π(σ(b)) = π(b). Hence

the image of this map is contained in H = ker(Aut(q/P) → Aut(π(q)/P)). Finally,

if σ ∈ H, then it has to fix π(b), and hence restricts to an element of Gπ(b), which

yields surjectivity of Gπ(b) → H.

This short exact sequence carries some information about the type q. For example

we have:

Proposition 3.3.24. Suppose q is P-internal and π(q) is fundamental. If the short

exact sequence:

1→ lim←−Ga → Aut(q/P)→ Aut(π(q)/P)→ 1

is definably split and G1 is connected, then G1 is retractable.

Proof. Since π(q) is fundamental, an element of Aut(π(q)/P) is defined as the E ′-

class of (π(a), π(b)), for π(a) and π(b) two realizations of π(q). Let s be a section of

the short exact sequence. We can then define gπ(a),π(b) = s((π(a), π(b))/E ′). This is

uniformly ∅-definable, and the compatibility condition is easily checked.

An interesting corollary is the following:

Corollary 3.3.25. Suppose q is P-internal and π(q) is fundamental. If the short

exact sequence:

1→ lim←−Ga → Aut(q/P)→ Aut(π(q)/P)→ 1

is definably split and G1 is connected, then the type q is the product of two weakly

orthogonal P-internal types.
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Proof. Immediate consequence of Theorem 3.3.5 and Proposition 3.3.24.

Note that we obtained a converse to Theorem 3.3.12:

Theorem 3.3.26. Suppose q is P-internal. Assume G1 is connected, and π(q) is

fundamental. Then G1 is retractable if and only if the short exact sequence:

1→ lim←−Ga → Aut(q/P)→ Aut(π(q)/P)→ 1

is definably split.

Corollary 3.3.25 can be used to derive information about families of internal types

in M from the behavior of definable group extensions in P .

As an example of such an application, we will briefly mention Jin and Moosa’s

recent paper [18]. In said paper, the authors consider a type q in DCF0, defined

by an equation {x′ = f(x)}, where f is a rational function, with parameters in any

differential field. They then ask the following question:

Question 3.3.27. Assuming q is C-internal, when is the pullback δ log−1(q) by the

logarithmic derivative also internal to the constants?

Among other results, the authors obtain the following:

Theorem 3.3.28 (Jin-Moosa). If the binding group of q is not of dimension 3, then

δ log−1(q) is internal to the constants if and only if it is bialgebraic with a product of

two weakly orthogonal almost C-internal types.

Their proof goes through different cases, depending on the binding group of q. Our

work allows for some simplification in the cases where this group is one dimensional.

First remark that because the binding group of q is one dimensional, we know from

results in Jin and Moosa’s paper (Corollary 3.5) that q is weakly orthogonal to C,

and in particular the groupoid associated to (δ log−1(q), δ log) is connected. We give

a rough idea of how to obtain some of their results using groupoids below.
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Since q is C-internal, Corollary 3.3.23 yields a short exact sequence:

1→ lim←−Ga → Aut(δ log−1(q)/C)→ Aut(q/C)→ 1

where:

1. Aut(q/C) is either Ga(C) or Gm(C), as it is a one dimensional connected affine
algebraic group (in [18], Jin and Moosa prove that it cannot be an elliptic curve)

2. each Ga is an algebraic subgroup of Gn
m, for some n

3. The projective limit lim←−Ga is isomorphic to some Ga’s

Thus every group in this sequence is an algebraic group, and the morphisms be-

tween them also are algebraic. This implies that this sequence is algebraically (and

definably) split. Therefore Corollary 3.3.25 applies.

The extension of these methods to the case of q not one-dimensional could be

an interesting area of investigation. Remark that Corollary 3.3.25 does not apply

anymore, as q is not fundamental, so more work would be needed. If q is already al-

gebraic over C, the groupoid is not connected anymore, so our methods will not apply.

In dimension higher than one, it might be possible to obtain results by considering

products of q.

Although the type-definable Delta groupoid ∆G(q, π,P) captures a lot of infor-

mation about the type q, it fails to account for interaction between fibers of two

non-independent realizations of π(q). Hence, it seems desirable to refine our methods

and construct an algebraic object witnessing these interactions.

The ideal candidate for this is a simplicial groupoid. After our warm-up with

Delta groupoids, we will now define these.

Definition 3.3.29. The category ∆ is the category with finite ordinals as objects,

and order preserving functions as morphisms.

Note that the only difference with the category ∆̂ used for Delta groupoids is that

we now allow any order preserving function, not just strictly order preserving. And

similarly, we have a categorical definition for simplicial groupoids:
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Definition 3.3.30. Given a category C, a simplicial object in C is a functor F :

∆̂op → C. A simplicial groupoid is a simplicial object in the category of groupoids.

We also have the following characterisation:

Proposition 3.3.31. A simplicial groupoid is equivalent to the following data :

1. For every integer n ∈ N, a groupoid Gn

2. For every integer n ∈ N∗, and every i ∈ [[0, · · ·n]], a groupoid morphism (that
is, a functor) ∂ni : Gn → Gn−1, called a face map

3. For every integer n ∈ N∗, and every i ∈ [[0, · · ·n]], a groupoid morphism ηni :
Gn → Gn+1, called a degeneracy map

subject to the following conditions, known as the simplicial identities, for each n

where they make sense :

1. ∂i ◦ ∂j = ∂j−1 ◦ ∂i for all i < j

2. ηi ◦ ηj = ηj+1 ◦ ηi for all i ≤ j

3. ∂i ◦ ηj = ηj−1 ◦ ∂i for all i < j

4. ∂i ◦ ηj = id for i = j or i = j + 1

5. ∂i ◦ ηj = ηj ◦ ∂i−1 for all i > j + 1

Recall that we are fixing q ∈ S(∅) and an ∅-definable map π such that (q, π)

is relatively P-internal. We will now construct the simplicial groupoid ΣG(q, π/P)

associated to it. In contrast to the Delta groupoid previously constructed, the mor-

phism sets will fail to be uniformly definable, thus this will not yield a type-definable

groupoid, according to our definition.

Let us first exhibit a sequence of groupoids (G̃n)n∈N. For all n, we let Ob(G̃n) =

{(π(a1), · · · π(an)) : a1, · · · , an |= q}. For π(a) ∈ Ob(G̃n), we define Fπ(a) as the

type definable set q(x1) ∪ · · · ∪ q(xn) ∪ {π(xi) = π(ai), i = 1, · · · , n}, i.e. the

fiber over π(a). For π(a), π(b) ∈ Ob(G̃n), we define Mor(π(a), π(b)) as the set of
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elementary bijections from Fπ(a) to Fπ(b), induced by an automorphism of M fix-

ing P(M) ∪ {π(ai), π(bi), i = 1, · · · , n} pointwise. Note that Mor(π(a), π(b)) ⊂
n∏
i=1

Mor(π(ai), π(bi))), and Mor(π(a), π(a)) is a subgroup of
n∏
i=1

Mor(π(ai), π(ai))).

An extra issue, compared with the construction of the Delta groupoid, is that the

type-definable sets Fπ(a) do not have a canonical extension to a complete type (like

q⊗n in the Delta case). This is why we will not be able to get uniform type-definability

of Mor(π(a), π(b)) for π(a), π(b) ∈ Ob(G̃n).

Nevertheless, for fixed π(a) = π(a1, · · · , an) ∈ Ob(G̃n) and π(b) = π(b1, · · · , bn) ∈

Ob(G̃n), we will now prove that Mor(π(a), π(b)) is type definable over π(a), π(b).

First remark that if tp(π(a)/∅) 6= tp(π(b)/∅), then Mor(π(a), π(b)) = ∅. Thus we can

assume tp(π(a)) = tp(π(b)). Pick (a1, · · · , an) = α and (b1, · · · , bn) = β, where each

ai (resp. bi) is a fundamental systems of solutions for tp(ai/π(ai)) (resp. tp(bi/π(bi))).

As we assumed that tp(π(a)/∅) = tp(π(b)/∅), we can pick these fundamental systems

so that tp(α/∅) = tp(β/∅).

Let r = tp(α/∅) = tp(β/∅), note that we can apply π, coordinate-wise, to any

realization of r, and the resulting pair (r, π) is relatively P-internal. Thus, by our pre-

vious results, we obtain a type-definable groupoid G(r, π), and the set of morphisms

Mor(π(α), π(β)), being in Mor(G(r, π)), is type definable over π(α), π(β), and thus

over π(a), π(b).

Since Fπ(a) ⊂ dcl(α,P) and Fπ(b) ⊂ dcl(β,P), the sets Mor(π(a), π(b)) and

Mor(π(α), π(β)) are in bijection. Thus we have proven that the sets of morphisms

in the G̃n are type-definable. Note that this also shows that the set obtained does

not depend of the choice of the ai and the type r. We now just have to prove that

composition is definable.

Let us fix π(a), π(b), π(c) ∈ Ob(G̃n), for some n. We can again assume that

tp(π(a)) = tp(π(b)) = tp(π(c)), and pick fundamental systems α, β, γ having the

same type r over ∅. As was argued previously, we see that composition in G(r, π)

72



completely describes composition between Mor(π(a), π(b)) and Mor(π(b), π(c)) in G̃n.

Thus the latter is definable.

Thus for each n we have obtained a groupoid G̃n. Its set of objects is type-

definable, sets of morphisms are type-definable, but not uniformly, and composition

is definable, but again, not uniformly.

To obtain a simplicial groupoid, we must now construct maps between these

groupoids. We can pick the same face maps as for the Delta groupoid, i.e. restrictions.

As for the degeneracy maps, if a = (a1, · · · , an) and b = (b1, · · · , bn), we let

ηi(a) = (a1, · · · , ai, ai, · · · , an) and ηi(b) = (b1, · · · , bi, bi, · · · , bn), i.e. we repeat the

i-th coordinate. If σ ∈ Mor(π(a), π(b)), we can then define ηi(σ) in the same fashion,

repeating the action of σ on the i-th fiber.

It is easy to check that these groupoids and maps form a simplicial groupoid, and

that the face and degeneracy maps are definable.

To conclude this section, we will examine an example, pointed out to us by Rahim

Moosa, showing that the morphism sets are not uniformly type-definable.

Example 3.3.32. We work in a monster model M of DCF0. Consider the logarithmic

derivative δ log(x) = δ(x)
x

, and the generic type q of {x, δ(δ log(x)) = 0}. This is a

well-know 2-analysable type over the constants C, but not C-internal.

More precisely, for any a |= q, the type tp(a/δ log(a)) is stationary and C-internal,

so (q, δ log) is relatively C-internal. However, the groupoid G̃2 is not type-definable.

Proof. This is mostly well known, and we only need to prove that G̃2 is not type-

definable. We refer the reader to [4] for an elegant proof of the rest of this statement.

Consider two generic constants a and b. Then the binding groups of δ log−1(a)

and δ log−1(b) are isomorphic to Gm(C), the multiplicative group of the constants,

and are definable over a and b, respectively.

We make the assumption that G̃2 is type-definable, and will derive a contradiction.

In particular it implies that the groups Gab are uniformly type definable over the
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parameters a, b, as they are Mor((a, b), (a, b)) in G̃2. In fact, as DCF0 is ω-stable,

these groups are uniformly definable.

Consider the map Ga,b → Gb, its kernel consists of elements of Ga×Gb, such that

the Gb coordinate is the identity. Thus it is of the form Ka × {1}, where Ka is a

subgroup of Ga. Since this face map is {a, b}-definable, the group Ka is definable as

well, and by strong minimality, it is either finite or equal to Ga.

The set {b |= δ log(q), ker(Ga,b → Gb) = {Ga × {1}} is therefore relatively defin-

able over a, that is, it is the intersection of δ log(q) with an a-definable set. Hence

the set {b |= δ log(q), ker(Ga,b → Gb) 6= {1} × Ga} is also relatively a-definable,

and by the discussion above, we have ker(Ga,b → Gb) 6= Ga × {1} if and only

if ker(Ga,b → Gb) = Ka × {1}, with Ka < Ga finite. In turns, this is equiv-

alent to δ log−1(a)(M) ⊂ acl(δ log−1(b) ∪ C). In conclusion, the set Xa = {b |=

δ log(q), δ log−1(a)(M) ⊂ acl(δ log−1(b) ∪ C)} is relatively a-definable.

We will obtain a contradiction from this relative definability. By Lemma 2.4.20,

we see that δ log−1(a)(M) ⊂ acl(δ log−1(b)∪C) if and only if for all α ∈ δ log−1(a)(M)

there is n > 0 such that αn ∈ F , where F is the differential field generated by C and

δ log−1(b).

Let β ∈ δ log−1(b), then δ log−1(b) = {c · β : c ∈ C}, and δ(β) = b · β. Hence

F = C < β >, the field generated by β and C.

Therefore, for α ∈ δ log−1(a), we have that αn ∈ F if and only if there are

polynomials P,Q ∈ C[X] such that αn = P (β)
Q(β)

. Set P =
k∑
i=1

piX
i and Q =

l∑
j=1

qjX
j.

Hence αnQ(β) = P (β), and applying δ we get:

P (β)′ = δ(αnQ(β)) = anαnQ(β) + αnQ(β)′

= anP (β) + αnQ(β)′
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Combining these two equations and identifying αn yields:

P (β)

Q(β)
=
P (β)′ − anP (β)

Q(β)′

hence:

P (β)Q(β)′ = Q(β)(P (β)′ − an(P (β)))

A straightforward computation gives us P (β)′ =
k∑
i=1

ibpiβ
i and Q(β)′ =

l∑
j=1

jbqjβ
j.

Since P andQ have coefficients in C, the previous identity is a polynomial equation

over C satisfied by β. We can pick β to be a generic point of δ log−1(C), implying it

cannot satisfy such an equation, unless all the coefficients are zero.

In particular, the dominant coefficients are zero, yielding:

pklbql = ql(kbpk − anpk)

which simplifies into:

(k − l)b = na

If k = l, this implies that a = 0 (as n > 0), but again, this cannot happen because

a is generic in C. Hence k 6= l, and therefore b = n
k−la. So b ∈ Xa implies that there

is r ∈ Q \ {0} such that b = r · a.
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Reciprocally, suppose that there are non zero n,m ∈ Z such that b = n
m
a, and

let β ∈ δ log−1(b). Consider some γ such that γn = βm. Then we have δ(γn) =

nδ(γ)γn−1, but also:

δ(γn) = δ(βm)

= mbβm

= naβm

= naγn

hence we get δ(γ) = aγ. Therefore γ ∈ δ log−1(a). But γ ∈ acl(β), which implies

that δ log−1(a)(M) is a subset of acl(δ log−1(b) ∪ C), yielding in turns that b ∈ Xa.

To sum up, we have proved that b ∈ Xa if and only if there is r ∈ Q such that

b = r · a. The set Xa being a-type definable, this would imply that Q is a-type

definable in C, which is a contradiction. Hence the groupoid G̃2 cannot be type

definable.

Note that uniform definability of the morphism sets is the only obstruction to

these groupoids being type-definable. In fact, the simplicial groupoid
∑
G(q, π/P)

still contains a lot of information about q, in the form of type-definable groups.

More precisely, the binding groups Gπ(a) = Aut(tp(a/π(a))), where a is a sequence

of (not necessarily independent) realizations of q. A deeper study of these simplicial

groupoids is a promising avenue for future research.
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CHAPTER 4

UNIFORM RELATIVE INTERNALITY

This chapter is joint with my advisor Anand Pillay and Rémi Jaoui.

We will introduce the new notion of uniform relative internality. It will turn out

to be equivalent to the previously defined collapse of a Delta groupoid. In fact, the

first use of uniform relative internality was to simplify the proof of the Delta groupoid

internality criterion given by Theorem 3.3.22.

Indeed, in most concrete applications, uniform relative internality is easier to use

than Delta groupoids. This is why, starting from now, it will become the focal point

of our investigation, while groupoids fade in the background.

4.1 First results, link with Delta groupoids

Recall that P is a family of types over ∅, and that we assume ∅ = acl(∅). Let us

start, as is now expected, with a definition:

Definition 4.1.1. Let (q, π) be relatively P-internal, with q ∈ S(∅). Then (q, π) is

said to be uniformly relatively P-internal (resp. almost P-internal) if there is a tuple

e such that for any a |= q, we have a ∈ dcl(π(a), e,P) (resp. a ∈ acl(π(a), e,P)).

This definition would make sense replacing ∅ by any algebraically closed set of

parameters A. The choice of ∅ here is only a matter of convenience. However, as

we will see in Section 4.4, different choice for A will lead to different behavior of

uniformly internal types.

77



Even more important is that the family P is over a fixed set of parameters. Indeed,

suppose that we replace P with the family Q of all types, over any set of parameters,

that are P-internal. Then any relatively P-internal pair is uniformly Q-internal.

The chosen name is quite transparent: all the types tp(a/π(a)) are P-internal,

and we can choose a tuple witnessing internality uniformly for all π(a) realizing π(q).

The simplest way for (q, π) to be relatively P-internal is for it to decompose as

q = π(q)⊗ r, where r is a P-internal type.

Definition 4.1.2. The pair (q, π) is said to be trivial (resp. almost) if for any a |= q

there is c ∈ dcl(a), independent from π(a) over ∅, such that a ∈ dcl(c, π(a)) (resp.

acl(c, π(a))) and tp(c/∅) is P-internal. In that case, if r = tp(c), we have q = r⊗π(q)

(resp. q is in the algebraic closure of r ⊗ π(q)(M)).

In practice, we will often consider a P-internal type tp(a/b), and consider the

type tp(ab/b). If π is the projection on the b coordinate, then (tp(ab), π) is relatively

P-internal. To make notation less cumbersome, we introduce the following:

Definition 4.1.3. The (almost) P-internal type tp(a/b) is said to be (almost) uni-

formly P-internal if tp(ab) is uniformly relatively (almost) P-internal via the projec-

tion on the b coordinate.

Remark 4.1.4. If (q, π) is uniformly relatively internal, then q is internal to the

family of types P ∪ {π(q)}. However, the converse is false.

For example, consider q orthogonal to P and π : q(2) → q the projection on the

second coordinate. Then q(2) is internal to P∪{π(q(2))}. However, the pair (q(2), π) is

not uniformly relatively internal to P . Indeed, this would mean that there is a tuple

e such that for any (a, b) |= q(2), we have a ∈ dcl(b, e,P). Picking (a, b) independent

of e, we see that this contradicts orthogonality to P .

Note the similarity with how internal types were defined: the only difference is

the need to introduce π(a). In practice, this means that the same techniques used for
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working with internal types can be used to work with uniformly relatively internal

types. As an illustration, let us prove:

Proposition 4.1.5. Let (q, π) be uniformly relatively almost P-internal. Then there

is a Morley sequence (ai)i=1···n of realizations of q such that for any a |= q, independent

of (ai)i=1···n, we have a ∈ acl(π(a), a1, · · · , an,P).

Proof. Let e be such that for all a |= q we have a ∈ acl(π(a), e,P), which exists by

assumption. Let a |= q be independent from e over the empty set, and let c ∈ P be

such that a ∈ acl(π(a), e, c).

Consider tp(ac/ acl(e)), it is a stationary type, let d be its canonical base. Pick

(aici)i∈N, a Morley sequence in tp(ac/ acl(e)), which we can assume to be independent

from ac over e. We know that ac |̂
d

acl(e), and from this and the assumption,

forking calculus yields a ∈ acl(π(a), c, d). But d ∈ acl((aici)1≤i≤n) for some n, hence

a ∈ acl(π(a), (aici)1≤i≤n, c), so a ∈ acl(π(a), (ai)1≤i≤n,P).

Now let a′ be any realization of q independent from (ai)1≤i≤n over the empty

set. Since a is independent from e over the empty set, and independent over e of

the sequence (ai)i∈N, we have that a is independent from (ai)i∈N over the empty set.

Since q = tp(a/∅) is stationary, this implies that tp(a/(ai)i∈N) = tp(a′/(ai)i∈N), hence

a′ ∈ acl(π(a′), (ai)1≤i≤n,P).

In some cases, the independence restriction of Proposition 4.1.5 is not required.

We first recall:

Definition 4.1.6. The preweight of a type p = tp(a/A), denoted prwt(p), is the

largest cardinal κ such that there exists an A-independent sequence (bi)i<κ such that

a 6 |̂
A
bi for all i.

The weight of p, denoted wt(p), is sup({prwt(q), q non-forking extension of p}).
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Proposition 4.1.7. Let (q, π) be uniformly relatively almost P-internal, and assume

that wt(q) is finite. Then there is a Morley sequence (ak)k=1···r of realizations of q

such that for any a |= q, we have a ∈ acl(π(a), a1, · · · , an,P).

Proof. This is essentially the same proof as 4.1.5. However, once we obtain the

sequence (ai)i=1···n = a, we consider a Morley sequence (aj)j∈N in tp(a).

Because q has finite weight, there is m ∈ N such that for any realization a′ of q,

there is 1 ≤ j ≤ m such that a′ |̂ aj. By mimicking the proof of 4.1.5, we see that

(aj)j=1···m is the required Morley sequence.

In particular, this is valid for any type q of a superstable theory, as any type then

have finite weight. One last, very useful consequence of these methods is:

Proposition 4.1.8. The type q is uniformly P-internal (resp. almost) via π if and

only if for some (any) a |= q, there is a tuple e, independent from a over ∅, such that

a ∈ dcl(π(a), e,P) (reps. a ∈ acl(π(a), e,P)).

Proof. The left to right direction is immediate. For the other direction, one simply

has to copy the proof of Proposition 4.1.5.

The next proposition allows, if one does not mind replacing uniform internality

by almost uniform internality, to choose parameters internal to P :

Proposition 4.1.9. Suppose (q, π) is uniformly relatively almost P-internal. Then

there is a tuple of parameters t such that:

1. for any a |= q independent from t over ∅, we have a ∈ acl(t, π(a),P)

2. tp(t/∅) is P-internal

Proof. By assumption, there are a |= q, a tuple e, independent from a over ∅, and

c ∈ P , such that a ∈ acl(π(a), e, c). Consider t = Cb(stp(ac/e)).
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By properties of canonical bases, we have ac |̂
t
e, thus a ∈ acl(t, π(a), c). As

t ∈ acl(e), we also know that a is independent from t over ∅. As q is stationary, for

any b |= q independent from t over ∅, we have b ∈ acl(t, π(b),P). This yields property

1.

For the second property, recall that t ∈ dcl((aici)i=1···n), for (aici)i=1···n a Morley

sequence in stp(ac/e). Because a |̂ e, we can prove, by induction and forking cal-

culus, that a1 · · · an |̂ e, and therefore a1 · · · an |̂ t. Lastly, since tp(ci) = tp(c) for

all i, we see that ci ∈ P for all i. This, combined with the independence previously

obtained, yields almost P-internality of tp(t/∅).

To replace t by an internal tuple, recall the following general fact: if tp(t/∅) is

almost P-internal, there is d ∈ dcl(d) such that tp(d/∅) is P-internal and t ∈ acl(d).

Applying this to the previously obtained t, we get our result.

This is a clarifying structural result. Indeed, consider the type q̃ = tp(t, π(a)),

the pair (q̃, ρ) is relatively P-internal, with ρ projection on the π(a) coordinate. In

fact, it is trivial, as q̃ = r ⊗ π(q), where r = tp(t/∅). As we could prove a similar

result for uniform almost P-internality, we have proved:

Theorem 4.1.10. The pair (q, π) is uniformly relatively almost P-internal if and

only if there exists a trivial pair (q̃, π̃) such that q(M) ∈ acl(q̃(M),P).

Another enlightening structural corollary, pointed out by Anand Pillay, is:

Theorem 4.1.11. Let Pint be the internal closure of P, that is, the family of partial

types over ∅ that are internal to P. The pair (q, π) is uniformly almost P-internal if

and only if for some (any) a |= q, the type tp(a/π(a)) is Pint-algebraic.

Proof. The left to right direction is an immediate consequence of Proposition 4.1.9.

For the right to left direction, assume that tp(a/π(a)) is Pint-algebraic. So there

is a tuple c of realizations of Pint such that a ∈ acl(c, π(a)). By definition of Pint,
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there is a tuple t such that c ∈ acl(t,P) and c |̂ t. We can assume that t |̂
c
a by

picking a realization of tp(t/c)|a.

This yields t |̂ a and a ∈ acl(π(a), t,P), hence (q, π) is uniformly almost P-

internal by Proposition 4.1.8.

Note that since the tuple t we obtained is P-internal, it has, in particular, a

binding group Aut(tp(t/∅)/P). Information on this group can be recovered from the

binding groups of fibers:

Lemma 4.1.12. Let t, a, c be as in 4.1.9, and (ai, ci)) the Morley sequence obtained

in the proof. Then the binding group Aut(tp(t/(π(ai))i=1···n)/P) is the image, under a

definable finite-to-one morphism, of Aut(tp(a1, · · · , an/(π(ai))i=1···n))/P). Moreover,

if π(q) is orthogonal to P, we have:

Aut(tp(t/∅)/P) = Aut(tp(t/(π(ai))i=1···n)/P)

= Aut(tp(a1, · · · , an/(π(ai))i=1···n)/P)

Proof. For the first part, note that t ∈ dcl((ai)i=1···n,P). This allows to construct a

π(a1), · · · , π(an)-definable morphism:

Aut(tp(a1, · · · , an/(π(ai))i=1···n)/P)→ Aut(tp(t/(π(ai))i=1···n)/P)

by taking σ ∈ Aut(tp(a1, · · · , an/(π(ai))i=1···n)/P) to its unique extension as an auto-

morphism in Aut(tp(t/(π(ai))i=1···n)/P). Note that this extension exists by stability,

and is unique because t ∈ dcl((ai)i=1···n,P). It is finite-to-one because for each i we

have ai ∈ acl(t, π(ai),P).

Now assume that π(q) is orthogonal to P , we need to show that the binding group

of tp(t/∅) is the same as the binding group of tp(t/π(a1), · · · , π(an)).

Recall that a fundamental system for tp(t/π(a1) · · · π(an)) is given by a Morley
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sequence (ti)i=1···m in tp(t/π(a1) · · · π(an)). As t |̂ π(a1), · · · , π(an), we can prove,

by induction and forking calculus, that such a sequence is also a Morley sequence

in tp(t/∅). Thus, if m is picked large enough, it is also a fundamental system of

solutions for tp(t/∅). Fix such a Morley sequence (t1, · · · tm). To ease notation, we

will, for the rest of the proof, write a = a1, · · · , an and t = t1, · · · , tm.

A morphism σ ∈ Aut(tp(t/∅)/P) is given by the class of (t, σ(t)) under some ∅-

definable equivalence relation. Showing that t and σ(t) have the same type over P ∪

{π(a1), · · · , π(an)} will also show, by Fact 2.2.14, that there is τ ∈ Aut(tp(t/π(a))/P)

taking t to σ(t).

If we can show this for any σ ∈ Aut(tp(t/∅)/P), we would have shown the ex-

istence of a definable group homomorphism Aut(tp(t/∅)/P) → Aut(tp(t/π(a))/P).

This morphism would be injective by construction, and surjective because if t ≡P,π(a)

σ(t), then also t ≡P σ(t). Therefore, this would yield the desired group isomorphism.

So fix σ ∈ Aut(tp(t/∅)/P), we need to show that σ(t) has the same type as t

over P ∪ {π(a)}. As π(q) is orthogonal to P and tp(t/∅) is P-internal, we deduce

that π(q) is orthogonal to the family of types P ∪ {tp(t/∅)}. Hence π(q)⊗n is also

orthogonal to this family.

In particular, as π(q)⊗n is stationary, and both π(a) and σ(π(a)) realize π(q)⊗n,

they have the same type over P ∪ tp(t/∅)(M). Therefore, by Fact 2.2.14 again, there

is an automorphism τ fixing P ∪ tp(t/∅)(M) pointwise and taking π(a) to σ(π(a)).

Fix an extension of σ to Aut(M), which we will also denote σ (even though it is

not unique). Consider the automorphism τ−1 ◦σ, it fixes P pointwise, fixes π(a), and

takes t to σ(t). This proves that t ≡P,π(a) σ(t), what we wanted to show.

One of the features of uniform relative internality is that it is the exact property

needed to force an analysable type to be internal. Indeed we can prove:
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Observation 4.1.13. Suppose (q, π) is relatively P-internal. Then q is P-internal

(resp. almost P-internal) if and only if π(q) is P-internal (resp. almost P-internal)

and (q, π) is uniformly relatively P-internal (resp. uniformly relatively almost P-

internal).

Proof. We will only treat the case of internality and uniform internality, as the almost

internal case is similar.

Suppose first that q is internal to P . We immediately get that π(q) is internal

as well. It also yields a fundamental system of solutions, denote it a, which we can

pick as a tuple of independent realizations of q. If we now pick any b |= q, we have

b ∈ dcl(a,P), hence also b ∈ dcl(a, π(b),P).

For the other implication, assume that (q, π) is uniformly relatively P-internal and

π(q) is P-internal. Hence, the type q is internal to the family of types P∪{π(q)}. But

because π(q) is P-internal, this implies that q itself is P-internal (see [29], Remark

7.4.3).

We now briefly return to groupoids in order to prove Theorem 3.3.22. The key

observation is that uniform relative internality corresponds exactly to collapse of the

Delta groupoid.

Theorem 4.1.14. Let (q, π) be relatively P-internal. Then (q, π) is uniformly rela-

tively P-internal (resp. almost) if and only if the Delta groupoid ∆G(q, π/P) collapses

(resp. almost).

Proof. Again, we will only prove the equivalence of collapsing of the groupoid and

uniform P-internality, the other equivalence being proved in a similar way. Suppose

first that q is uniformly relatively P-internal. By Proposition 4.1.5, there is a tuple

a of independent realizations of q such that for any b |= q independent of a, we have

b ∈ dcl(a, π(b),P).
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Pick any π(b) > π(a), it is enough to prove that the map Gπ(b) → Gπ(a) is injective.

Note that tp(a/π(a)) is P-internal, and thus has a fundamental system of solutions

a0. The type tp(b/π(b)) is also P-internal, hence also has a fundamental system of

solutions (b1, · · · , bn). For each i, either bi is in π−1(π(a)), and hence in dcl(a0,P),

or π(bi) is independent of π(a) over ∅, so bi is independent of a over ∅. In this second

case, the assumption yields bi ∈ dcl(a, π(bi),P) ⊂ dcl(a0, π(bi),P). Hence we obtain

bi ∈ dcl(a0, π(bi),P) for all i, so tp(b/π(b))(M) ⊂ dcl(a0, π(b),P).

Now let σ ∈ Gπ(b) be such that its image under Gπ(b) → Gπ(a) is the identity. Then

it has to fix a0, and it fixes π(b) and P too. Since we just proved tp(b/π(b))(M) ⊂

dcl(a0, π(b),P), this implies that has to fix tp(b/π(b))(M) pointwise, so it is the

identity of Gπ(b).

For the other implication, suppose that ∆G(q, π/P) collapses. Hence there is

a tuple a of independent realizations of q such that for any π(b) ≥ π(a), the map

Gπ(b) → Gπ(a) is injective. The type tp(a/π(a)) is P-internal, and it has a fundamen-

tal system of solutions. From now on, we replace a by this fundamental system.

We need to prove that for any b |= q independent of a, we have b ∈ dcl(a, π(b),P).

To do so, it is enough, by Fact 2.2.14, to prove that any automorphism σ of M fixing

a, π(b) and P pointwise has to fix b. So consider such an automorphism σ. It restricts

to σ ∈ Gπ(b)π(a), as it fixes π(b) and π(a). But it also fixes a, which is a fundamental

system of solutions for tp(a/π(a)). Hence, its image under the map Gπ(a)π(b) → Gπ(a)

is the identity, so by collapse assumption, it is itself the identity in Gπ(a)π(b), and in

particular fixes b.

The internality criterion of Theorem 3.3.22 is now immediate: assuming π(q) is

internal, the type q is internal if and only if it is uniformly relatively internal if and

only if the associated Delta groupoid collapses.
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4.2 Preserving Internality

Recall that one way to obtain a relatively internal type is to consider an internal

type tp(a/b). In that case, the pair (tp(ab/∅), π) is relatively P-internal, with π the

projection on the b-coordinate. Thus we moved from a single internal type to a family

of internal types. This is where this dissertation got its name from: all our work can

be seen as the development of tools for the study of families of internal types.

By considering the behavior of the relatively internal type tp(ab), it is possible

to refine our understanding of internality. Indeed, not all internal types are created

equal, and tp(ab/∅) can exhibit various behaviors. The first refining of internality we

will consider was first defined by Moosa in [24]:

Definition 4.2.1. The almost P-internal type tp(a/b) preserves P-internality if for

any tuple c such that tp(b/c) is almost P-internal, the type tp(a/c) is also almost

P-internal.

This notion was introduced as an analogy with complex geometry, namely Moishe-

zon morphisms (see Section 2.4.2). In the theory CCM of compact complex mani-

folds, one usually considers internality to the complex projective line P, as it is, up

to non-orthogonality, the only non-locally modular strongly minimal set.

It is proved in [24], working in CCM, that if X and Y are irreducible compact

complex spaces and f : X → Y is a Moishezon morphism, then if a is a realization

of the generic type of X, the type tp(a/f(a)) preserves P-internality. However, in

the same paper, Moosa points out that the converse is false. Hence preserving inter-

nality is strictly weaker than being Moishezon. We will return to compact complex

manifolds later in this chapter.

Remark that not all almost P-internal types preserve P-internality. Here is an

example from differentially closed fields:

Example 4.2.2. Consider a generic constant a, and α ∈ δ log−1(a), generic in that
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definable set. Then tp(α/a) is C-internal, and tp(a/∅) is C internal, but as we pointed

out before, the type tp(α/∅) is well-know to be not almost C-internal.

Therefore, preserving internality is strictly stronger than being internal. As it

turns out, being uniformly relatively internal is even stronger:

Theorem 4.2.3. Let tp(a/b) be an almost P-internal type. If tp(a/b) is uniformly

almost P-internal (in the sense of definition 4.1.3), then it preserves P-internality.

Proof. Let c be a tuple such that tp(b/c) is almost P-internal. By assumption, there

is a tuple e such that ab ∈ acl(b, e,P), and we can assume that e |̂ ab. Moreover, we

can pick a realization of tp(e/ab) independent from c over ab, which yields e |̂ abc.

Almost P-internality of tp(b/c) yields a tuple b of realizations of tp(b/c), indepen-

dent from b over c, such that b ∈ acl(b,P). We can assume that b |̂
c
abe. Since we

also have e |̂ abc, so e |̂
c
ab, forking calculus yields eb |̂

c
ab. But ab ∈ acl(b, e,P)

and b ∈ acl(b,P), so ab ∈ acl(e, b,P). Hence tp(ab/c) is almost P-internal.

This implication is not strict. To find counterexamples, we will turn to differen-

tially closed fields of characteristic zero. Let us first make the following observation,

valid in any stable theory:

Observation 4.2.4. Let P be a family of ∅-type definable sets, and let (q, π), q ∈ S(∅)

be relatively P-internal. Suppose that π(q) is orthogonal to P and of Lascar rank one.

Then for any a |= q, the type tp(a/π(a)) preserves P-internality.

Proof. Let c be such that tp(π(a)/c) is almost P-internal. There are two possibilities.

If π(a) |̂ c, then tp(π(a)/c) is still orthogonal to P , and thus the only way it can

be almost P-internal is to be P-algebraic. Else, we get that tp(π(a)/c) is algebraic,

thus again tp(π(a)/c) is P-algebraic. Finally, if tp(π(a)/c) is P-algebraic, we can

conclude that tp(a/c) is almost P-internal.
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Luckily for us, the following result, due to Hrushovski and Itai [14], allows for the

identification of many sets orthogonal to the set C of constants in DCF0. We now

work in a monster model U of DCF0.

Theorem 4.2.5. Let f ∈ C[X]. If 1
f

has a simple and a double pole, then the strongly

minimal set defined by x′ = f(x) is orthogonal to C.

Now consider a definable set X = {x, x′ = f(x)}, orthogonal to the constants,

and its pullback δ−1(X) under the derivative. Let q be the generic type of δ−1(X).

Then (q, δ) is relatively C-internal, and by Observation 4.2.4, for any a |= q, the type

tp(a/δ(a)) preserves C-internality.

Question 4.2.6. When is such a type not uniformly almost C-internal?

In the following, we will give two examples showing that both cases are possible,

as well as state a necessary and sufficient criteria for uniform internality. Let us start

with an example of non-uniform C-internality:

Example 4.2.7. Consider the polynomial f(x) = (x − 1)2x(x + 1). By Theorem

4.2.5, the definable set Y = {x′ = f(x)} is orthogonal to the constants. Moreover,

if q is the generic type of δ−1(Y ), then for any a |= q, the type tp(a/δ(a)) is not

uniformly almost C-internal.

Proof. Assume, by way of contradiction, that it is uniformly almost C-internal. Since

the Galois group of a fixed fiber is a subgroup of Ga(C), the additive group of the

constant field, a quick Galois-theoretic argument yields that it is actually uniformly

C-internal.

The type δ(q) is orthogonal to the constants, thus Lemma 4.1.12 applies. There is

a tuple t such that tp(t/∅) is C-internal, and its binding group is the image, under a

finite-to-one morphism, of the binding group Aut(tp(a1, · · · , an/δ(a1), · · · , δ(an))/P).

The latter group is a subgroup of Ga(C)n.
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Moreover, there exists a |= q, independent from t over ∅, with a ∈ dcl(t, δ(a), C).

That is, the tuple a is in the differential field C{δ(a), t} generated by δ(a) and t over

C.

Let K be the differential field C{t} generated by t over C. Because δ(δ(a)) =

f(δ(a)), the differential field K{δ(a)} is generated, as a field, by δ(a). That is, we

have K{δ(a)} = K(δ(a)).

Moreover, as δ(a) in orthogonal to the constants and K internal to the constants,

we see that δ(a) is independent from K. Thus, the type of δ(a) over K is simply

the type of an algebraically transcendental element x, satisfying δ(x) = f(x). The

differential field (K(δ(a)), δ) is therefore isomorphic to (K(X), δ) with δ(X) = f(X).

By choice of K, we know that a ∈ K(δ(a)). Therefore, there must be a solution

S, in K(X), of the equation S ′ = X.

Recall that K(X) embeds, as a differential field, into the Laurent series K((X))

over K, by extending the derivation in the natural way. Thus, we can write S =
∞∑
i=N

aiX
i, for some N ∈ Z and ai ∈ K, with aN 6= 0. Using the equation S ′ = X, we

deduce the following, for each i :

a′i + (i− 3)ai−3 − (i− 2)ai−2 − (i− 1)ai−1 + iai = 0 if i 6= 1

= 1 if i = 1

Thus, if N 6= 1, we obtain a′N = −NaN . If N 6= 0, this equation implies that

tp(aN/∅) is C-internal, with binding group a subgroup of Gm(C). Recall that aN

belongs to K, which is generated, over C, by t. The binding group of tp(t/∅) is an

algebraic group, finite extension of a subgroup of Ga(C)n, for some n. This is possible

only if Aut(tp(aN/∅)/C) is finite, i.e. aN ∈ acl(C), which implies that aN ∈ C. In

particular, we have NaN = a′N = 0, so aN = 0, a contradiction.
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Thus, we have determined that N = 0 or N = 1. In that case, we obtain that

a′1 = 1 − a1. As in the previous paragraph, this implies that tp(a1/∅) is C-internal

with Galois group a subgroup of Gm(C), and by the same technique, that a1 ∈ C.

The only solution is a1 = 1. Using this argument, we can prove, by induction on i,

that ai ∈ C for all i > 0.

Thus the ai, i ≥ 1 are constants, solution to the recurrence relation (i− 3)ai−3 −

(i − 2)ai−2 − (i − 1)ai−1 + iai = 0. One can show that the Laurent series
∞∑
i=0

aiX
i

is not a rational function in X. Thus, even though a solution to S ′ = X exists in

K((X)), there is no solution in K(X). A fortiori, the tuple a does not belong to

K(π(a)), contradicting our assumption of uniform C-internality.

The following example will give an example of uniform internality, and also an

example of a type which is uniformly C-internal but not C-algebraic:

Example 4.2.8. Consider X = {x′ = x3 − x2}, and q the generic type of δ−1(X).

Then for any a |= q, the type tp(a/δ(a)) preserves C-internality, and is uniformly

C-internal. Moreover, it is not C-algebraic.

Proof. We simply have to prove that there is some e ∈ U such that, for all a |= q,

we have a ∈ dcl(δ(a), e, C). Consider t satisfying t′ = 1, and b ∈ X generic. Then

δ(−1
b

+ t) = b, thus −1
b

+ t ∈ δ−1({b}). As this fiber is a one-dimensional C-vector

space, this implies that δ−1({b}) ⊂ dcl(b, t, C), what we needed.

To prove that this type is not C-algebraic, we will use methods similar to the one

of the previous example, and will leave most details to the reader.

Let a |= q, and b = δ(a). We have to show that a /∈ acl(b, C). First note that since

δ(a) = b, this is equivalent, by Fact 2.4.21, to a ∈ dcl(b, C). Using orthogonality of

δ(q) to C, this can be shown to be equivalent to δ(S) = X having a solution in the

differential field C(X), with δ(X) = X3 −X2. Passing to the Laurent series C((X)),

one can show, by working with coefficients, that such a solution cannot exist.
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To conclude our study of these examples, let us state the following criteria, con-

tained in a forthcoming paper, joint with Rémi Jaoui and Anand Pillay:

Proposition 4.2.9 (Pillay, Jaoui, J.). If Y = {x′ = f(x)} is orthogonal to the

constants, for some polynomial f ∈ C[x], and q is the generic type of δ−1(Y ), then

for a |= q, the type tp(a/π(a)) is uniformly internal to the constants if and only if

there exists c ∈ C such that x−c
f(x)

has no simple pole.

The methods used in the proof are quite different than the ones employed here,

and more elegant. However, they rely on the fibers being one-dimensional over C.

The method used in this dissertation, relying Galois groups, might generalize more

easily to higher dimensional fibers.

In conclusion, we have the following chain of strict implications:

P-algebraic

Uniformly P-internal

Preserves P-internality

P-internal

The rest of this chapter will be dedicated to the arrow from uniformly P-internal to

preserves P-internality. More precisely, we will examine known instances of preser-

vation of internality, and try to determine whether or not uniform relative almost

internality is involved.

4.3 Tangent Bundles in DCF0

Inspired by results of Chatzidakis, Moosa and Trainor [4], we first examine the

case of differential tangent bundles. In that paper, the authors proved that if X is

91



a finite dimensional differential algebraic variety in a differentially closed field, then

internality to the constants is preserved by the generic type of the differential jet

spaces to X at generic points. Thus we settle to determine whether this type is also

uniformly almost C-internal.

For a detailed construction of differential tangent bundles, we refer the reader to

[32]. We will recall some facts that will be useful to us. For the rest of this section,

we will work in a fixed monster model U |= DCF0.

Let X be a finite dimensional differential-algebraic variety, we will denote its

differential tangent space at b ∈ X by T∂(X)b, and the differential tangent bundle of

X by T∂(X). We invite the reader to consult Section 2.4.1 for definitions of differential

algebraic varieties and their dimension (or [32] and [4]). Here are some facts that we

will make use of:

Fact 4.3.1. 1. If X is a finite dimensional differential-algebraic variety, then so
is T∂(X), and for any b ∈ X, the tangent space T∂(X)b is a finite dimensional
C-vector space. Moreover, if k is the field of definition of X, the dimension of
this vector space is equal to dim(a/k).

2. Any tuple in Tδ(X) is a pair (v, b), where b ∈ X and v ∈ Tδ(X)b. In particular,
we have a projection π : T∂(X)→ X.

3. There is an ∅ definable section s : X → T∂(X) of π, such that s(b) = (b, 0)

4. X → T∂(X) is a product-preserving covariant functor on the category of finite
dimensional differential-algebraic varieties.

5. If f : X → Y is a map of differential-algebraic varieties, then for any a ∈ X,
the map Tδ(f) : Tδ(X)a → Tδ(Y )f(a) is linear. If f is generically finite-to-one,
it is an isomorphism.

Let X be a finite dimensional differential-algebraic variety. From the equations

defining X, one can derive the defining equations of T∂(X). There are differential

polynomials P1(x1, · · · , xm), · · · , Pn(x1, · · · , xm) such that X is defined by the zero

locus of P1, · · · , Pn. Let d be the highest order of the P1, · · ·Pn. Then there are
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polynomials Q1, · · ·Qn ∈ M[xj,k, 1 ≤ j ≤ m, 1 ≤ k ≤ d] such that for all 1 ≤ i ≤ n,

we have Pi(x1, · · · , xm) = Qi(∂
k(xj), 1 ≤ j ≤ m, 1 ≤ k ≤ d).

Fact 4.3.2. Let X be a differential-algebraic variety, defined over the constants.

Using the previous notations, if a = (a1, · · · am) ∈ X, the tangent space T∂(X)a is the

zero locus of the polynomials Si =
∑
k,j

∂Qi

∂xj,k
(a1, · · · , am)∂k(yj), for 1 ≤ i ≤ n.

See [19] for a detailed explanation of that fact.

A consequence of these equations, pointed out to us by Omar Léon-Sanchez, is

the following:

Proposition 4.3.3. Let X be a differential-algebraic variety, defined over the con-

stants. If a ∈ X, then ∂(a) ∈ T∂(X)a.

Proof. Apply ∂ to the equations defining X.

Hence, we obtain that:

Corollary 4.3.4. If X is a one dimensional differential-algebraic variety defined over

the constants, with b ∈ X generic and a ∈ Tδ(X)b generic, then tp(a/b) is uniformly

C-algebraic, and in particular uniformly C-internal.

Proof. If X ⊂ C, then also Tδ(X) ⊂ C, so the result is immediate.

If not, then δ(b) 6= 0, hence δ(b) is a non-zero element of the one dimensional

C-vector space Tδ(X)b, thus a basis. Hence Tδ(X)b ⊂ dcl(b, C), an in particular

a ∈ dcl(b, C), yielding uniform algebraicity.

In particular, this is true even is X is orthogonal to the constants. Another way

to obtain uniform internality is to use a group structure on X. More precisely, Fact

4.3.1 (4) implies that:
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Corollary 4.3.5. If G is a differential-algebraic group, then so is T∂(G), and the

map T∂(G)→ G is a group morphism.

In that case, the differential tangent bundle will be uniformly internal:

Proposition 4.3.6. Let G be a differential algebraic group, and T∂(G) its differential

tangent bundle. Let b ∈ G be a generic point of G, and a ∈ T∂(G)b be generic in the

tangent space of b. Then tp(a/b) is uniformly C-internal.

Proof. This follows from the fact that for any differential algebraic group G, its

differential tangent bundle splits as G× Tδ(G)e, where e is the identity of G.

Alternatively, one can prove this ’by hand’, using that the group law of G lifts to

a group law on Tδ(G), by functoriality of Tδ.

In a forthcoming paper with Anand Pillay and Rémi Jaoui, an example of a dif-

ferential tangent bundle that is not uniformly internal to the constants will be given.

Thus, even for this specific case, it is a stronger notion than preserving internality.

4.4 Moishezon Morphisms in CCM

For this section, we will work in a monster model A of CCM, the first order theory

of compact complex varieties (meaning reduced irreducible complex analytic space).

An important sort in CCM is P, the complex projective line. It can be shown

that the induced structure on P is simply its algebraic variety structure, and that is

is, up to non-orthogonality, the only rank one non-locally modular definable set in

CCM. Thus, it is natural to consider internality to P.

Let us consider a complete type p = stp(a/b), for some tuples a and b. As was

explained in Section 2.4.2, if we let X = loc(a, b) and Y = loc(b), then p is the

generic type of the generic fiber of the map f : X → Y . In [24], Moosa gives the

following characterizations:
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• p is P algebraic if and only if X meromorphically embeds into Y × Pn over Y ,
for some n ≥ 0.

• p is almost P-internal if and only if p is P-internal if and only if there is a complex
analytic space Y ′ → Y , such that the fibred product X×Y Y ′ meromorphically
embeds into Y ′ × Pn over Y ′, for some n > 0.

Preservation of internality was introduced in that paper, with the goal of trans-

posing a property of holomorphic maps, called being Moishezon, to a more general

ω-stable context. It lies in between algebraicity and internality. To define it, we will

follow the exposition given in [22].

Let S be a compact complex variety and O it structure sheaf, i.e. O is locally

isomorphic to the sheaf of holomorphic functions.

A coherent analytic sheaf F on S is a sheaf of O-modules such that there is a

covering X of S by euclidian open sets and for any U ∈ X , we have a resolution:

OpU OqU FU 0α

where the sheaves are restricted to U . Given such a sheaf, we will sketch the con-

struction of the projective linear space over S associated to F . Let us first explain

the intuition behind this construction. Note that OqU acts on U × Pq−1, because

if (f1, · · · , fq) ∈ OU and (x, y1, · · · , yq) ∈ U × Pq−1, we can define the action as

(x, f1(x)y1, · · · , fq(x)yq). However, this action does no go down to an action of FU

on U × Pq−1, as once we quotient, it might no longer be well-defined. The projective

linear space associated to F will be the largest space on which this action makes

sense.

More precisely, since the morphism α is OU -linear, it can be represented by a q×p

matrix M = (mi,j), with mi,j ∈ OU for all i, j.

We let X be coordinates for U , and (Y1 : · · · : Yq) coordinates for Pq−1. We

(locally) construct P(F)U as the analytic subset of U ×Pq−1 defined by the equations

m1,iY1 + · · ·+mq,iYq = 0
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for all i = 1, · · · , p. One can check that this does not depend on a the choice of

coordinates for U , patches into P(F), and that the projections U × Pq−1 → U yield

an holomorphic surjection P(F)→ S.

We can now give:

Definition 4.4.1. A morphism f : X → S of projective variety is projective if there

is a coherent analytic sheaf F on S and an embedding g : X ↪→ P(F) such that the

following commutes:

X P(F)

S

g

f

Such a morphism is said to be Moishezon instead if it is bimeromorphic, over S,

to a projective morphism. That is, there is a projective morphism h : Y → S and a

meromorphic map g : X → Y such that the following commutes:

X Y

S

g

f h

It is proved in [24] that

Proposition 4.4.2 (Moosa). If f : X → S is Moishezon, and a ∈ X is generic,

then tp(a/f(a)) preserves P-internality, but the converse is false.

On the other hand, if f : X → S is such that tp(a/f(a)) is P-algebraic, then X

meromorphically embeds into S×Pn, for some n, and thus f is Moishezon. However,

there are Moishezon morphisms for which this is not the case.

Therefore, being Moishezon lies strictly between being P-algebraic and preserving

P-internality. Recall that we proved that being uniformly internal also lies strictly

between these two notions in general. The hope was therefore that, in CCM, being

uniformly internal would exactly correspond to being Moishezon. It is unfortunately

not the case.

In [22], Moosa proves:
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Proposition 4.4.3. Suppose X and S are compact complex varieties and f : X →

S is a fibre space (i.e. its general fibres are irreducible). Then the following are

equivalent:

1. For generic a ∈ X(A), the type tp(a/f(a)) is P-internal

2. For some n ≥ 0, there is a compact complex variety T and a surjection T → S
such that X(T ) is bimeromorphic to a subspace of T × Pn over T

3. There is a compact complex variety T and a holomorphic surjection T → S
such that X(T ) → T is Moishezon.

where X(T ) is an irreducible component of T ×S X, projecting onto T .

We will prove:

Proposition 4.4.4. Under the same assumptions, if tp(a/f(a)) is uniformly P-

internal, then tp(a/f(a)) is P-algebraic. In particular f is Moishezon.

Proof. Our proof is inspired of the proof of Proposition 4.4.3, 1⇒ 2.

If tp(a/f(a)) in P-internal, then there is a tuple t containing f(a) such that a is

independent of t over f(a), and a is interdefinable, over t, with a tuple from P(A)

(see [22] for details).

If we let T be the locus of t, then the proof yields the following commutative

diagram:

X X(T ) T × Pm

S T

f

h

where h is a meromorphism, and a bimeromorphism onto its image.

In the case where tp(a/f(a)) is uniformly P-internal, we can assume that t =

(f(a), b), where b is a tuple of realizations of tp(a), independent from a. If Y ⊂ Xn

is the locus of b, then by independence, we have that S × Y is the locus of t.

So T ×S X = (S × Y ) ×S X = Y ×X, hence X(T ) = Y ×X and we obtain the

commutative diagram:
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X Y ×X Y × S × Pm

S Y × S

f id×f

h

So for any a ∈ Y , we have a diagram:

{a} ×X {a} × S × Pm

{a} × S

id×f

ha

There is a such that ha is defined on a non-empty open subset of {a}×X. Indeed,

the function h itself is defined on an open set of Y ×X, so on an open set of {a}×X,

for each a. If all these open sets are empty, then h is not defined anywhere, a

contradiction.

Hence there is a meromorphic map:

X S × Pm

S

f

ha

which is a bimeromorhism on its image because h is. Hence f : X → S is

P-algebraic!

This proposition is the expression, in CCM, of a much more general model-

theoretic phenomenon, pointed out by Anand Pillay:

Proposition 4.4.5 (Pillay). Let M be a model of some stable theory T , eliminating

imaginaries. Let q ∈ S(M) and π be an M-definable function. Suppose that (q, π) is

uniformly P-internal, where P is a formula over M . Then (q, π) is P-definable, i.e.

for any a |= q, we have a ∈ dcl(M,π(a),P).

This implies our result, as in CCM, any element of the standard model A is named

by a constant, and thus dcl(∅) is a model.

Note that, given a type tp(a/b), if it is stationary, the coordinate map π : loc(a)×

loc(b)→ loc(b) is a fibre space, by Proposition 2.4.27. Thus the previous proposition

applies, and we have proved:
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Proposition 4.4.6. In CCM, any type tp(a/b) that is uniformly P-internal is also

P-algebraic.

As previously stated, there are Moishezon morphisms that are not P-algebraic.

Hence, being uniformly internal is a lot stronger than being Moishezon. The search

for a model-theoretic property coinciding with Moishezoness in CCM is therefore still

ongoing.
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CHAPTER 5

AROUND THE CANONICAL BASE PROPERTY

This final chapter is devoted to the study of the canonical base property (CBP for

short), and will compile different results I have obtained. This is a notion appropriate

for the study of supersimple theories. In this dissertation, we will focus on superstable

theories. Recall the definition of the canonical base property:

Definition 5.0.1. Let T be a superstable theory and M |= T a monster model. It is

said to have the canonical base property if (possibly working over some parameters)

for any tuples a, b ∈ M, if stp(a) has finite Lascar rank and b = Cb(stp(a/b)), then

tp(b/a) is almost P-internal, where P is the family of non-locally modular rank one

types.

Let us give some context to this definition. Intuitively, we expect the family

of types P to be somewhat easy to understand, which is the reason why we study

internality to this family. Indeed, in many concrete examples, this family reduces,

up to non-orthogonality, to an algebraically closed field of characteristic zero (for

example DCF0 and CCM). This behavior is in line with the expectations set by

Zilber’s trichotomy.

Notice how the canonical base property can be thought of as one-basedness relative

to P . Indeed, a type p is one-based if for any realization a |= p and any b, we have

Cb(stp(a/b)) ∈ acl(a). The CBP replaces algebraicity by almost P-internality.

Finally, let us give a visual interpretation of the CBP. If b = Cb(stp(a/b)), then

tp(b/a) can be though of as parametrizing a family of ”curves”, all containing a
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as a generic point. The canonical base property then states that this family of

curves is parametrized (using some extra parameters) by a set definable in P . In

most examples, P reduces to an algebraically closed field, yielding that the family is

parametrized by an algebraic variety.

The CBP has been used to prove various results in specific theories. See [32] and

[2] for examples.

5.1 The Counterexample

For a while, it was believed that all superstable theories of finite Lascar rank had

the CBP. However, Hrushovski, Palaćın and Pillay constructed a theory without the

CBP in [16], which still is the only known superstable counterexample.

Let us remind the reader how they construct such a structure. It is a reduct of

an algebraically closed field of characteristic zero, constructed using tangent bundles.

Namely, their structure consist of:

• A sort for the field of complex numbers C, equipped with its field structure

• A sort S = C× C, equipped with:

– The projection π : S → C on the first coordinate

– The action of C on S defined by c ∗ (a, b) = (a, b+ c)

– For each irreducible variety W of Kn, defined over Qalg, a predicate PW
for TW ⊂ (C× C)n

They prove that this structure is ℵ1-categorical and has Morley rank 2. Moreover,

every type is analysable in C, hence the family P of non locally-modular rank one

types reduces, up to non-orthogonality, to the generic type of C. By using Morley

rank arguments, as well as studying the automorphism group Aut(S/C), they show:

Theorem 5.1.1 (Hrushovski, Palaćın,Pillay). The structure (S,C) in the prescribed

language does not have the CBP.
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Remark that one could mimic that construction, but replacing C by an uncount-

able algebraically closed field of characteristic p > 0. In their paper, the authors ask

if this structure has the canonical base property. We answer that question positively.

To prove this, we will proceed through a lemma, valid regardless of the characteristic

of the base field:

Lemma 5.1.2. Let (S, F ) be a structure consisting of an uncountable algebraically

closed field, and another sort S constructed exactly as in the counterexample. Then

the automorphism group Aut(S/F ) of automorphisms of this structure, fixing F

pointwise, is isomorphic to Der(F ), the group of derivations of F . In particular,

if Char(F ) > 0, this group is trivial.

Proof. In [16], it is proved that any δ ∈ Der(F ) gives rise to an element Aut(S/F ),

by setting σδ(a, b) = (a, b+δ(a)). This comes down to a straightforward computation

showing this preserves tangent bundles.

To go the other direction, we will prove that any element σ ∈ Aut(S/F ) arises

this way. So fix σ ∈ Aut(S/F ).

First, notice that σ has to fix the first coordinate, as it fixes F and the projection

on the first coordinate is in our language. For any a, b ∈ F , let f(a, b) be such that

σ((a, b)) = (a, b + f(a, b)), we need to prove that f(a, b) does not depend on b, and

is a derivation on the a coordinate.

Because σ respects the action of F , for any a, b, c ∈ F , we have:

σ((a, b+ c)) = σ(c ∗ (a, b))

= c ∗ σ((a, b))

= c ∗ (a, b+ f(a, b))

= (a, b+ c+ f(a, b))
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so in particular, the function f(a, b) does not depend on b, we will denote f(a, b) =

f(a), for any b.

Let us now prove that f(a + b) = f(a) + f(b) for any a, b ∈ F . Consider the

variety W ⊂ F 3 given by the graph of addition, that is, by x + y = w. Its tangent

bundle TW is also given by the graph of addition. That is, if (a, b, a+ b) ∈ W , then

TW(a,b,a+b) is given by u+v = r. Let a, b ∈ F , and ((a, u), (b, v), (a+b, u+v)) ∈ TW ,

then σ(((a, u), (b, v), (a+ b, u+ v))) ∈ TW , yielding that:

((a, u+ f(a)), (b, v + f(b)), (a+ b, u+ v + f(a+ b))) ∈ TW

so u+ f(a) + v + f(b) = u+ v + f(a+ b), hence f(a) + f(b) = f(a+ b).

To show that for any a, b ∈ F , we have f(ab) = af(b) + f(a)b, we will proceed

similarly, but this time using the graph of multiplication. So let W ⊂ F 3 be given by

w = xy. If a, b, ab ∈ W , then the tangent bundle TW(a,b,ab) is given by ub + va = r.

Let a, b ∈ F , and ((a, u), (b, v), (ab, ub + va)) ∈ TW . Again using that σ preserves

TW , we get that:

b(u+ f(a)) + a(v + f(b)) = ub+ va+ f(ab)

which immediately yields f(ab) = bf(a) + af(b).

This concludes the proof, as we have proved that σ((a, b)) = (a, b+ f(a)) for any

a, b, where f is a derivation on F .

Finally, if Char(F ) > 0, then because F is algebraically closed, there are no

non-trivial derivations on F , giving us the last part of the Lemma.

Corollary 5.1.3. If we consider the structure (S, F ), with F an algebraically closed

103



field of positive characteristic, then this structure does have the CBP.

Proof. In fact, the previous Lemma yields much more: the sort S is in the definable

closure of F . Since F has the CBP, this implies that the structure (S, F ) has the

CBP.

The authors also conjecture that any structure interpretable in an algebraically

closed field of positive characteristic has the CBP. At the moment, this is still open,

and we do not see how to attack this problem.

Let us give a bit more precision about how the structure (S,C) is proved to

not have the CBP. The authors consider a tuple (a, b, c, d) ∈ C4 generic point of

the algebraic variety W defined by xw + yz = 1, and (u, v, r, s) ∈ C4 such that

((a, u), (b, v), (c, r), (d, s)) is a generic point of TW . As stated before, they then

consider Morley rank and groups of automorphisms to prove:

• ((a, u), (b, v)) is interalgebraic with Cb(stp(((c, r), (d, s))/((a, u), (b, v)))))

• tp(((a, u), (b, v))/((c, r), (d, s))) is not almost C-internal.

Because C is the only non-locally modular rank one type up to non-orthogonality,

this proves that (S, F ) does not have the canonical base property.

A careful examination of their proof leads one to believe that the field structure

is not necessary. In fact, most of the argument relies on the machinery of general

stability. For this reason, it seemed plausible that an ”axiomatization” of the coun-

terexample could be achieved. That is, a set of purely model-theoretic properties

preventing a theory from having the canonical base property. This will be achieved

in the next section.

104



5.2 Axiomatizing the Counterexample

Recall that the counterexample relies on generic points of the variety W given by

xw + yz = 1, which are then lifted to the sort S using tangent bundles. The variety

W is the seminal example of non-locally modular behavior in algebraically closed

fields.

Examining the proof, one realizes that what is needed is not properties specific

to tangent bundles, but the ability to transfer some independence and algebraicity

between the sorts F and S. This yields the following axiomatization:

Theorem 5.2.1. Suppose we have a two sorted structure with sorts P and S, with the

sort P being strongly minimal, non-locally modular, and with geometric elimination

of imaginaries. Moreover, assume there is a projection π : S → P. Finally, suppose

that:

1. The fibers of π are P-internal, strongly minimal, and π−1({π(a)})∩acl(π(a)) =
∅ for all a ∈ P.

2. If π(b1), · · · , π(bm) ∈ P are independent over the empty set, then b1, · · · , bm are
independent over the empty set too

3. for any tuple b of elements of S, we have b |̂
π(b)
P

4. If a1, · · · an ∈ P and an ∈ acl(a1, · · · , an−1), then there are b1, · · · , bn ∈ S such
that π(bi) = ai for all i and bn ∈ acl(b1, · · · , bn−1)

then this structure is superstable of finite rank, ℵ1-categorical, and does not have the

canonical base property.

Proof. First note that this structure is P-analysable because the projection π has P-

internal fibers, so in fact superstable of rank 2. Moreover, up to non-orthogonality, the

set P is the only rank one set. This implies that this theory is unidimensional and ℵ1-

categorical, hence Morley rank will be additive by Lemma 2.1.29. Finally, internality

to the family of non-locally modular rank one types is equivalent to internality to
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P . So we just need to find tuples a, b such that Cb(stp(a/b)) = b and tp(b/a) is not

almost P-internal.

The proof will proceed using several claims. We encourage the reader to compare

our proof to the proof in [16], as we are mostly abstracting what was done there.

General stability theory yields tuples a = (a1, a2) ∈ P2 and e ∈ Peq such that

RM(a) = 2,RM(a/e) = 1, and e = Cb(stp(a/e)). Pick a Morley sequence (ai)i∈N in

tp(a/e). Then we have:

Claim 5.2.2. There is n ∈ N such that a1, · · · , an are independent over the empty

set and e ∈ acl(a1, · · · , an).

Proof. It is always true that e ∈ acl((ai)i∈N), and hence e ∈ acl(a1, · · · , an) for some

n. If the ai are independent over the empty set, we are done.

Else, let n be minimal such that tp(an+1/a1, · · · , an) forks over the empty set.

By assumption, we have RM(an+1/∅) = 2, so RM(an+1/a1, · · · , an) < 2, but also

RM(an+1/a1, · · · , an, e) = 1, so RM(an+1/a1, · · · , an) ≥ 1. This allows us to conclude

that RM(an+1/a1, · · · , an) = 1.

In particular, we obtained RM(an+1/a1, · · · , an) = RM(an+1/a1, · · · , an, e), so

an+1 |̂ a1,··· ,an e. Thus Cb(stp(an+1/a1, · · · , an, e)) ∈ acl(a1, · · · , an). Recall that

(ai)i∈N is a Morley sequence in tp(a/e), so an+1 |̂ e a1, · · · , an, yielding the equality

e = Cb(stp(an+1/e)) = Cb(stp(an+1/a1, · · · , an, e)). Combining this with the previ-

ous algebraicity, we get e ∈ acl(a1, · · · , an), and by choice of n, the a1, · · · , an are

independent over the empty set, giving us the desired tuple.

Let us, for the rest of the proof, fix that n.

Geometric elimination of imaginaries gives us a tuple c ∈ P interalgebraic with

e. Fix such a c = (c1, · · · , cm).

106



Since tp(a1) = tp(a), we know that a1 = (a1,1, a1,2). Moreover RM(a/c) = 1, so

we obtain that either a1,1 ∈ acl(c) or a1,2 ∈ acl(a1,1, c). Indeed, if a1,1 6∈ acl(c), then

we have 1 = RM(a/c) = RM(a1,1/c) + RM(a1,2/c, a1,1) = 1 + RM(a1,2/c, a1,1). We

can assume, without loss of generality, that a1,2 ∈ acl(a1,1, c).

Assumption 4 then yields b1 = (b1,1, b1,2), d = (d1, · · · dm) such that π(b) = a1,

π(d) = c and b1,2 ∈ acl(b1,1, d). We will prove that d = Cb(stp(b1/d)).

First, let us compute some ranks.

Claim 5.2.3. We have RM(b1) = 4 and RM(b1/d) = 2.

Proof. As RM(a1) = 2, we have a1,1 |̂ a1,2, thus b1,1 |̂ b1,2. This independence

yields RM(b) = RM(b1,1) + RM(b1,2). Moreover, we have RM(b1,1) = RM(b1,1/a1,1) +

RM(a1,1) = RM(b1,1) + 1, and by Assumption 1. we have that b1,1 6∈ acl(a1,1), so

RM(b1,1) = 2 = RM(b1,2). Thus we conclude that RM(b) = 4.

For the other equality, first note that a1,1 |̂ c, as otherwise a1,1 ∈ acl(c), and

because a1,2 ∈ acl(a1,1, c), this would imply a1 ∈ acl(c), contradicting RM(a1/c) = 1.

Hence, by Assumption 2, we obtain b1,1 |̂ d.

Now we can compute:

RM(b1, d) = RM(b1,1, b1,2, d)

= RM(b1,1, d)

= RM(d) + RM(b1,1/d)

= RM(d) + 2 since b1,1 |̂ d

On the other hand RM(b1, d) = RM(b1/d) + RM(d), thus RM(b1/d) = 2.

This will help us obtain the following:
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Claim 5.2.4. Let b1, · · · , bn be a Morley sequence in tp(b1/d). The tuple d belongs

to acl(b1, · · · bn), where n is the number obtained in Claim 5.2.2.

Proof. Let π(bi) = ai. Since a1, · · · , an is a Morley sequence in tp(a1/c), our choice

of n yields that the ai are independent over the empty set. By Assumption 2, the bi

are independent over the empty set too. We can then compute :

RM(b1, · · · , bn, d) = RM(d/b1, · · · , bn) + RM(b1, · · · , bn)

= RM(d/b1, · · · , bn) + 4n

and also :

RM(b1, · · · , bn, d) = RM(d) + RM(b1, · · · , bn/d)

= RM(d) + 2n

which gives us RM(d)− 2n = RM(d/b1, · · · , bn). Recall that by Claim 5.2.2 we have

c ∈ acl(a1, · · · , an), thus:

2n = RM(a1, · · · , an)

= RM(a1, · · · , an, c)

= RM(a1, · · · , an/c) + RM(c)

= RM(c) + n

yielding RM(c) = n. Strong minimality of the fibers implies that RM(d) ≤ 2n, and
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since RM(d)− 2n = RM(d/b1, · · · , bn), this forces RM(d/b1, · · · , bn) = 0.

Hence d ∈ acl(b1, · · · , bn), and b1, · · · , bn is a Morley sequence in tp(b1/d). This

yields that d is interalgebraic with Cb(stp(b1/d)). We will finish the proof by showing

that tp(d/b1) is not almost P-internal. We will use the following general fact:

Claim 5.2.5. Let a ∈ S and B ⊂ S be such that π(a) |̂ π(B). Then a 6∈ acl(B∪P ).

Proof. Let us assume, by way of contradiction, that a ∈ acl(B ∪ P). Assumption

3 gives us aB |̂
π(a)π(B)

P , which then yields a ∈ acl(π(a)B). But π(a) |̂ π(B),

which by Assumption 2 implies a |̂ B, hence also a |̂
π(a)

B. Finally, this implies

a ∈ acl(π(a)), contradicting Assumption 1.

We are now ready for the coup de grâce. Note that so far, we haven’t used the

non-local modularity of P . It allows us to pick tp(a1/e) describing a rich family of

curves, meaning RM(e) > 1, or equivalently e 6∈ acl(a1). Because c is interalgebraic

with e, and thanks to this choice for tp(a/e), we have c /∈ acl(a1). Without loss of

generality, we can assume that c1 6∈ acl(a1).

Assume that the structure does have the CBP. Then in particular, the type

tp(d/b1) would be almost P-internal. As c1 6∈ acl(a1), we get c1 |̂ a1, hence by

Assumption 2 also d1 |̂ b1. As tp(d/b1) is almost P-internal, so is tp(d1/b1), imply-

ing the existence of a small set E such that d1 |̂ b1 E and d1 ∈ acl(b1 ∪ E ∪ P ). But

d1 |̂ b1, thus d1 |̂ b1E, so Claim 5.2.5 yields that d1 6∈ acl(b1∪E∪P ), a contradiction.

Therefore, this structure does not have the CBP.

One might object that these conditions look very restrictive: what if such a struc-

ture simply does not exist? However, the counterexample exhibited by Hrushovski,
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Palaćın and Pillay does have these properties, so at least one such structure exist.

Hopefully, this characterization can pave the way for the construction of new coun-

terexamples.

Note in particular that the only assumption made on the strongly minimal set P

is non-local modularity, potentially allowing P to be CM-trivial, for example. Thus,

a potential use of this theorem is to prescribe various properties of P .

5.3 Final Remarks

In [2], Chatzidakis proves that if b = Cb(stp(a/b)) and stp(a/b) has finite Lascar

rank, then tp(b/a) is always P-analysable. Hence the CBP reduces to the problem of

the collapse of analysability into internality. This was the original motivation behind

the search for the internality criteria of Theorem 3.3.22.

After having obtained this criteria, and studied uniform internality in the previous

chapter, we are now back to our starting point. As of yet, the tools developed in

Chapter 3 did not produce any new criteria regarding the CBP. In fact, it is likely that

finer tools will be needed if these methods are to succeed, as the Delta groupoids of

Chapter 3 are too coarse to detect the fine inter-fiber interaction at play in Theorems

5.1.1 and 5.2.1. Indeed, observe that in both cases, we needed to understand the

fibers over non-independent points, which Delta groupoids fail to capture.

However, if one is ready to drop type-definability, and work with the full simplicial

groupoid, it seems likely that Theorem 5.2.1 could be expressed in the language of

groupoids. This could help construct new groupoid-based counterexamples.

Another interesting avenue for research are strengthenings of the CBP. Histori-

cally, the first one to be defined was:

Definition 5.3.1. Let T be a superstable theory and M |= T a monster model. It

is said to have the uniform canonical base property (UCBP) if (possibly working

over some parameters) for any tuples a, b ∈ M, if stp(a/b) has finite Lascar rank
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and b = Cb(stp(a/b)), then tp(b/a) preserves P-internality, where P is the family of

non-locally modular rank one types.

A surprising result obtained by Chatzidakis in [4] is the following:

Theorem 5.3.2. If T has the canonical base property, then it also has the uniform

canonical base property.

A natural question is:

Question 5.3.3. It T has the canonical base property, and b = Cb(stp(a/b)) with

tp(a/∅) of finite Lascar rank, is tp(b/a) uniformly almost P-internal ?

Note that as stated, this question does not make sense. Indeed, in the definition

of uniform internality, we required our family of type P to be over a fixed set of

parameters. To remedy this, we will need to work in a special class of superstable

theories, namely theories that are nonmultidimensional with respect to non-locally

modular Lascar rank one types. This means that any non-locally modular Lascar

rank one type is non orthogonal to some q ∈ S(∅). Let us call this assumption

(∗). As stated in [27], an example of theory not satisfying (∗) is given by an infinite

family of algebraically closed sets, indexed by a set with extra structure. However,

no natural counterexample are known.

Consider the family of types Q composed of types over ∅ that are almost P-

internal. It is proved in [27] that:

Proposition 5.3.4 (Palaćın, Pillay). In a superstable theory satisfying (∗), a sta-

tionary type p is almost Q-internal if and only if it is almost P-internal.

Thus under assumption (∗), one can study the CBP by considering the family Q,

which is over ∅. The pertinent question, in this context, is:

Question 5.3.5. Let T be a superstable theory, satisfying the canonical base property

and assumption (∗). Let b = Cb(stp(a/b)) with tp(a/∅) of finite Lascar rank, is

tp(b/a) uniformly almost Q-internal ?
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We can thus define a new strengthening of the CBP as follows:

Definition 5.3.6. Let T be a superstable theory satisfying (∗) and M |= T a monster

model. It is said to have the collapsed canonical base property (CCBP) if (possibly

working over some parameters) for any tuples a, b ∈ M, if stp(a/∅) has finite Lascar

rank and b = Cb(stp(a/b)), then tp(b/a) is uniformly almost Q-internal.

and the questions becomes whether the CCBP is equivalent to the CBP. This turns

out to be connected to yet another strengthening, defined by Palaćın and Pillay in

[27].

Definition 5.3.7. A theory T satisfying (∗) is said to have the strong canonical base

property (SCBP) if for any a, b such that tp(a/∅) has finite rank and b = Cb(stp(a/b)),

we have b ∈ acl(a,Q), i.e tp(b/a) is Q-algebraic.

We have the following (thanks to Anand Pillay for pointing this out):

Proposition 5.3.8. In a superstable theory satisfying (∗), a type tp(a/b) is uniformly

almost Q-internal if and only if it is Q-algebraic.

Proof. The right to left direction is immediate. For the other direction, recall that by

Theorem 4.1.11, if tp(a/b) is uniformly almost-Q-internal, it is Qint-algebraic, where

Qint is the family of types q ∈ S(∅) that are Q-internal. One can easily show that

Q = Qint, yielding the result.

In particular we have obtained:

Corollary 5.3.9. A superstable theory satisfying (∗) has the SCBP if and only if it

has the CCBP.

This completes the picture. Indeed, it is known by results of Hrushovski, Palaćın

and Pillay ([16] and [27]) that the strong canonical base property is strictly stronger

than the canonical base property.
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To show this, they prove a theorem linking the SCBP and Galois groups. First

recall:

Definition 5.3.10. An A-type-definable Galois group is said to be rigid if any type-

definable connected subgroup is defined over acl(A)

and their theorem:

Theorem 5.3.11 (Hrushovski, Palaćın, Pillay). If a theory T satisfies (∗), then T

has the strong CBP is and only if every binding group relative to Q is rigid.

One can show in particular that a non-rigid such binding group exists in DCF0,

proving that it does not have the strong CBP. As it was known to have the CBP by

earlier work of Pillay and Ziegler [32], this provides the desired example.

Let us summarize the situation: in this dissertation, we have considered three

different strengthenings of internality, and to each of these, there is a corresponding

strengthening of the canonical base property. We now have a complete picture of the

situation:

P-algebraic Strong canonical base property

Uniformly P-internal Collapsed canonical base property

Preserves P-internality Uniform canonical base property

P-internal Canonical base property

where the properties on the top two right rows are defined under assumption (∗).
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